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Abstract

We study the incidence of nonlinear labor income taxes in an economy with a

continuum of endogenous wages. We derive the e�ects of reforming nonlinearly

an arbitrary tax system in closed form, by showing that this problem can be

formalized as an integral equation. Our tax incidence formulas are valid both

when the underlying assignment of skills to tasks is �xed or endogenous. We

show qualitatively and quantitatively that contrary to conventional wisdom, if

the tax system is initially suboptimal and progressive, the general-equilibrium

�trickle-down� forces raise the bene�ts of increasing the marginal tax rates on

high incomes. We �nally derive a parsimonious characterization of optimal

taxes.
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Introduction

We study the incidence and the optimal design of nonlinear income taxes in a gen-

eral equilibrium Mirrlees (1971) economy. Our analysis connects two classical strands

of the public �nance literature that have so far been somewhat disconnected: the

tax incidence literature (Harberger (1962); Kotliko� and Summers (1987); Fullerton

and Metcalf (2002)), and the literature on optimal nonlinear income taxation in par-

tial and general equilibrium (Mirrlees (1971); Stiglitz (1982); Diamond (1998); Saez

(2001); Rothschild and Scheuer (2013)). The objective of the tax incidence analysis is

to characterize the �rst-order e�ects of locally reforming a given, potentially subopti-

mal, tax system on the distribution of individual wages, labor supplies, and utilities,

as well as on government revenue and social welfare. We provide closed-form analyt-

ical formulas for the incidence of any tax reform in the environment with arbitrarily

nonlinear taxes and a continuum of endogenous wages. A characterization of optimal

taxes in general equilibrium is then obtained immediately, by imposing that no tax

reform has a positive impact on social welfare.

In our baseline environment, there is a continuum of skills that are imperfectly

substitutable in production. The aggregate production function uses as inputs the

labor e�ort of all skills. Agents choose their labor supply optimally given their wage

and the tax schedule. The wage, or marginal product of labor, of each skill type is

endogenous. Speci�cally, it is decreasing in the aggregate labor e�ort of its own skill

if the marginal productivity of labor is decreasing, and increasing (resp., decreasing)

in the aggregate labor e�ort of those skills that are complements (resp., substitutes)

in production. We then microfound this production structure in an environment with

a technology over a continuum of tasks and endogenous assignment of skills to tasks

as in Costinot and Vogel (2010) and Ales et al. (2015). Thus our approach is in

the su�cient-statistic tradition (see Chetty (2009a)): our formulas hold whether the

underlying structure of the assignment is exogenous or endogenous.

For simplicity of exposition, we start by focusing on the incidence of general

tax reforms in a model where the utility function is quasilinear. When wages are

exogenous, the e�ects of a tax change on the labor supply of a given agent can be

easily derived as a function of the elasticity of labor supply of that agent (Saez,

2001). The key di�culty in general equilibrium is that a change in labor supply in

turn impacts the wage, and thus the labor supply, of every other individual. This

further a�ects the wage distribution, which in�uences labor supply decisions, and so
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on. Solving for the �xed point in the labor supply adjustment of each agent is the key

step in the tax incidence analysis and the primary technical challenge of our paper.

We show that this a priori complex problem of deriving the e�ects of an arbitrary

tax reform on individual labor supply can be mathematically formalized as solving an

integral equation. The tools of the theory of integral equations allow us to derive an

analytical solution to this problem for a general production function. Furthermore,

this solution has a clear economic interpretation. Speci�cally, it can be represented

as a series: its �rst term is the partial-equilibrium impact of the reform, and each

of its subsequent terms captures a successive round of cross-wage feedback e�ects

in general equilibrium. These are expressed in terms of meaningful elasticities for

an arbitrary production function, i.e., for any pattern of complementarities between

skills in production. Finally, these series reduce to particularly simple closed-form

expressions in some cases � namely, when the cross-wage elasticities are multiplica-

tively separable, which is the case if the technology is CES or in the larger HSA

class introduced by Matsuyama and Ushchev (2017). Once we have characterized the

incidence of tax reforms on labor supply, it is straightforward to derive the incidence

on individual wages and indirect utilities. Importantly, the elasticities we uncover

in general equilibrium (in particular, the cross-e�ect of an increase in labor supply

of a given skill on the wage of another skill) can be estimated in the data and are

su�cient statistics: conditional on these parameters, our incidence formulas are valid

whether the assignment of worker skills to production tasks is �xed as in Heathcote,

Storesletten, and Violante (2016), or endogenous as in Costinot and Vogel (2010).

Next, we analyze the aggregate e�ect of tax reforms on government revenue and

social welfare. We derive a general formula that shows that, in response to an increase

in the marginal tax rate at a given income level, the standard deadweight loss ob-

tained in the model with exogenous wages is modi�ed to include a general-equilibrium

term that depends on the covariation between the shape of the marginal tax rates

in the initial economy, and the pattern of production complementarities with the

skill where the tax rate has been perturbed. We derive further implications of this

general formula by focusing on speci�c functional forms for the initial economy's tax

schedule and the production function. When the elasticity of labor supply is con-

stant, the initial tax schedule has a constant (positive) rate of progressivity, and the

production function has a constant elasticity of substitution (CES), we obtain that

the bene�ts of reforming the tax schedule in the direction of higher progressivity are

larger (the excess burden is smaller) in general equilibrium than the conventional
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formula that assumes exogenous wages would predict. We show moreover that this

insight continues to hold in the model with endogenous assignment of skills to tasks,

and is robust to various extensions of our baseline environment. This result shows

that the conventional �trickle-down� forces (Stiglitz (1982), Rothschild and Scheuer

(2013)) may imply that higher tax rates on high income are more desirable than in

partial equilibrium if the tax system to which the tax reform is applied is initially not

optimal and resembles the U.S. tax code.

To understand the intuition for this result, suppose that the government raises

the marginal tax rate at a given income level. This disincentivizes the labor supply of

agents who initially earn that income, which in turn raises their own wage (since the

marginal product of labor is decreasing), and lowers the wage of the skills that are

complementary in production. Since the production function has constant returns to

scale, Euler's homogeneous function theorem implies that the impact of these wage

adjustments on aggregate income is equal to zero, even after labor supplies adjust

if the corresponding elasticity is constant. If moreover the tax schedule is linear, so

that the marginal tax rate is originally the same for all agents, we immediately obtain

that the impact of the reform on government revenue is zero � that is, the general-

equilibrium forces have no impact on aggregate government revenue beyond those

already obtained assuming exogenous wages. If instead the tax schedule is initially

progressive, then an increase in the marginal tax rate on high incomes raises their

wage and hence government revenue by a larger amount (since the marginal tax rate

is initially higher) than do the equivalent wage losses at all other income levels. In

other words, starting from a progressive tax code, the general equilibrium forces raise

the revenue gains from further increasing the progressivity of the tax schedule. We

�nally provide numerical simulations to quantify these results. We �nd that the gains

from raising the marginal tax rates on high incomes are signi�cantly a�ected by the

endogeneity of wages. In the U.S., assuming exogenous wages would imply that 33

percent of the revenue from a given tax increase is lost through behavioral responses;

instead, for our preferred calibrations, only 17 percent to 29 percent is lost once the

general equilibrium e�ects are taken into account.

We then consider various generalizations of our baseline model, and show that the

methodology we used to analyze our baseline environment extends to more sophis-

ticated frameworks with no further technical di�culties. We �rst allow for general

individual preferences with income e�ects. Second, we let agents choose their la-

bor supply both on the intensive (hours) and the extensive (participation) margins.
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Third, we analyze an economy with several sectors or education levels (Roy model

as in Rothschild and Scheuer (2013)), with a continuum of skills within each group

(and consequently overlapping wage distributions). For each of these extensions, we

derive closed-form tax incidence formulas and show that the main qualitative insights

we derived in our baseline model carry over.

Finally, we derive the implications of our analysis regarding the optimal tax sched-

ule. Our tax incidence analysis immediately delivers a general characterization of

optimal taxes, by equating the e�ects of tax reforms on social welfare to zero. In the

main body of the paper, we focus on deriving a novel characterization that depends

on a parsimonious number of parameters which can be estimated empirically. To do

so, we specialize our production function to have a constant elasticity of substitution

(CES) between pairs of types. This leads to particularly sharp and transparent the-

oretical insights. First, we obtain an optimal taxation formula that generalizes those

of Diamond (1998) and Saez (2001). There are two key di�erences between our for-

mula and those derived assuming exogenous wages. First, because of the decreasing

marginal productivity of labor, the relevant labor supply elasticity is smaller, imply-

ing lower disincentive e�ects of raising the marginal taxes, and hence higher optimal

rates. This is because a higher tax rate reduces labor supply, which in turn raises

the wage, and hence the labor supply, of these agents. Second, marginal tax rates

should be lower (resp., higher) for agents whose welfare is valued less (resp., more)

than average. This is because an increase in the marginal tax rate of a given skill

type increases her wage at the expense of all other types. We show that the general

equilibrium forces reinforce the U-shaped pattern of optimal taxes obtained by Dia-

mond (1998). We �nally extend the closed-form optimal top tax rate formula of Saez

(2001) in terms of the labor supply elasticity, the Pareto parameter of the income

distribution, and the elasticity of substitution between skills in production.

Related literature. This paper is related to the literature on tax incidence: see,

e.g., Harberger (1962) and Shoven and Whalley (1984) for the seminal papers, Hines

(2009) for emphasizing the importance of general equilibrium in taxation, and Kot-

liko� and Summers (1987) and Fullerton and Metcalf (2002) for comprehensive sur-

veys. Our paper extends this framework to an economy with a continuum of labor

inputs with arbitrary nonlinear tax schedules, i.e., we study tax incidence in the

workhorse model of optimal nonlinear labor income taxation of Mirrlees (1971); Dia-

mond (1998).
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The optimal taxation problem in general equilibrium with arbitrary nonlinear

tax instruments has originally been studied by Stiglitz (1982) in a model with two

types. The key result of Stiglitz (1982) is that at the optimum tax system, general

equilibrium forces lead to a lower (resp., higher) top (resp., bottom) marginal tax rate.

In the recent optimal taxation literature, there are two strands that relate to our work.

First, a series of important contributions by Scheuer (2014); Rothschild and Scheuer

(2013, 2014); Scheuer andWerning (2017), Chen and Rothschild (2015), Ales, Kurnaz,

and Sleet (2015), Ales and Sleet (2016), and Ales, Bellofatto, and Wang (2017) form

the modern analysis of optimal nonlinear taxes in general equilibrium.1 Speci�cally,

Rothschild and Scheuer (2013, 2014) generalize Stiglitz (1982) to a setting with N

sectors and a continuum of (in�nitely substitutable) skills in each sector, leading

to a multidimensional screening problem. Ales, Kurnaz, and Sleet (2015) and Ales

and Sleet (2016) microfound the production function by incorporating an assignment

model into the Mirrlees framework and study the implications of technological change

and CEO-�rm matching for optimal taxation.

Our baseline model is simpler than those of Rothschild and Scheuer (2013, 2014)

and Ales, Kurnaz, and Sleet (2015). In particular, di�erent types earn di�erent wages

(there is no overlap in the wage distributions of di�erent types, as opposed to the

framework of Rothschild and Scheuer (2013, 2014)), and the assignment of worker

skills to tasks involved in production is �xed (in contrast to Ales, Kurnaz, and Sleet

(2015)).2 The �rst key distinction is that these papers focus on optimal taxation

by applying the methods of mechanism design, whereas our study of tax incidence

is based on a variational, or �tax reform� approach, introduced by Piketty (1997);

Saez (2001, 2002) and extended to several other contexts by, e.g., Kleven, Kreiner,

and Saez (2009) and Golosov, Tsyvinski, and Werquin (2014). In this paper we ex-

tend these techniques to the general equilibrium framework with endogenous wages.

Our use of the variational approach and integral equations allows us to study more

generally the incidence of reforming an arbitrary initial tax system in any direction.

We show that the tax system to which the reform is applied (say, the U.S. tax code)

1Rothstein (2010) studies the desirability of EITC-type tax reforms in a model with heterogenous
labor inputs and nonlinear taxation. He only considers own-wage e�ects, however, and no cross-
wage e�ects. Further he treats intensive margin labor supply responses as occurring along linearized
budget constraints.

2Finally, our setting is distinct from those of Scheuer and Werning (2016, 2017), whose modeling
of the technology is such that the general equilibrium e�ects cancel out at the optimum tax schedule,
so that the formula of Mirrlees (1971) extends to their general production functions. We discuss in
detail the di�erence between our framework and theirs in Appendix A.4.4 .
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is a crucial determinant of the direction and size of the general equilibrium e�ects.

Second, our characterization of optimal income tax rates is novel: assuming a simpler

production function leads to a parsimonious and transparent formula that generalizes

the U-shape result of Diamond (1998), and a closed-form expression for the top tax

rate that generalizes that of Saez (2001).3 Third, we also analyze extensions of our

baseline framework to production structures which induce endogenous assignment of

skills to tasks as in Sattinger (1975); Teulings (1995); Costinot and Vogel (2010); Ales,

Kurnaz, and Sleet (2015), and overlapping wage distribution as in Roy (1951); Roth-

schild and Scheuer (2013, 2014).4 Crucially, we show that conditional on the wage

elasticities that we introduce, our baseline tax incidence formulas remain identical

in these alternative production structures. Therefore our paper di�ers from those

mentioned above in that it is in the su�cient statistic tradition (Saez, 2001; Chetty,

2009b): our main results are valid for several underlying primitive environments.

Finally, our paper is related to the literature that characterizes optimal govern-

ment policy, within restricted classes of nonlinear tax schedules, in general equilibrium

extensions of the continuous-type Mirrleesian framework. Heathcote, Storesletten,

and Violante (2016) study optimal tax progressivity in a model where agents face

idiosyncratic risk and can invest in their skills. Itskhoki (2008) and Antras, de Gor-

tari, and Itskhoki (2016) characterize the impact of distortionary redistribution of

the gains from trade in an open economy. Their production functions are CES with

a continuum of skills and restrict the tax schedule to be of the CRP functional form.

On the one hand, our model is simpler than their framework as we study a static and

closed economy with exogenous skills. On the other hand, for most of our theoretical

analysis we do not restrict ourselves to a particular functional form for taxes nor

the production function. Our papers share, however, one important goal: to derive

simple closed form expressions for the e�ects of tax reforms in general-equilibrium

Mirrleesian environments. Our baseline modeling of the production function, which

is the same as that of Heathcote, Storesletten, and Violante (2016), is also motived by

an empirical literature that estimates the impact of immigration on the native wage

3Our generalization of the optimal top tax rate to the case of endogenous wages is related to
Piketty, Saez, and Stantcheva (2014), who extend the Saez (2001) top tax formula to a setting with
a compensation bargaining channel using a variational approach. More generally, Rothschild and
Scheuer (2016) study optimal taxation in the presence of rent-seeking. In this paper we abstract
from such considerations and assume that individuals are paid their marginal productivity.

4We also use the calibration of Ales, Kurnaz, and Sleet (2015) in our quantitative analysis with
endogenous assignment.
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distribution and groups workers according to their position in the wage distribution

(Card, 1990; Borjas, Freeman, Katz, DiNardo, and Abowd, 1997; Dustmann, Frattini,

and Preston, 2013). The empirical literature on immigration is a useful benchmark

because it studies the impact of labor supply shocks of certain skills on relative wages,

which is exactly the channel we want to analyze in our tax setting (except that in

our model the labor supply shocks are induced by tax reforms). An alternative in the

immigration literature is to group workers by education levels (Borjas, 2003; Card,

2009). We fully extend our analysis and results to a production function with di�er-

ent education groups in Sections D.3 and D.4.

This paper is organized as follows. Section 1 describes our framework and de�nes

the relevant elasticity variables. In Section 2 we analyze the incidence of nonlinear tax

reforms on individual variables (labor supply, wages, utilities). In Section 3 we derive

the e�ects of tax reforms on aggregate variables (government revenue, social welfare).

In Section 4, we calibrate the model and evaluate our main results quantitatively. In

Section 5 we analyze various generalizations of our baseline environment. Finally, in

Section 6 we derive optimal taxes with a CES production function. The proofs of our

formulas and additional results are gathered in the Appendix.

1 The baseline environment

In this section we set up a model to derive our main results most transparently. We

extend our analysis to more general environments in Section 5 and Appendix C.2.

1.1 Initial equilibrium

Individuals. There is a continuum of mass 1 of workers indexed by their skill

θ ∈ Θ = [θ, θ̄] ⊂ R+, distributed according to the pdf f (·) and cdf F (·). Individual
preferences over consumption c and labor supply l are represented by the quasilinear

utility function c − v (l), where the disutility of labor v : R+ → R+ is twice contin-

uously di�erentiable, strictly increasing and strictly convex. An individual with skill

θ earns a wage w (θ) that she takes as given. She chooses her labor supply l (θ) and

earns taxable income y (θ) = w (θ) l (θ). Her consumption is equal to y (θ)−T (y (θ)),

where T : R+ → R is a twice continuously di�erentiable income tax schedule. Her
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optimal labor supply choice l (θ) is the solution to the �rst-order condition:5

v′ (l (θ)) = [1− T ′ (w (θ) l (θ))]w (θ) . (1)

We denote by U (θ) the utility attained by the agent, and by L (θ) ≡ l (θ) f (θ) the

total amount of labor supplied by individuals of type θ.

Firms. There is a continuum of mass 1 of identical �rms that produce output using

the labor of every skill type θ ∈ Θ. We posit a constant returns to scale aggregate

production function F (L ) over the continuum of labor inputs L ≡ {L (θ)}s∈Θ.
6

In equilibrium, �rms earn no pro�ts and the wage w (θ) is equal to the marginal

productivity of type-θ labor, that is,

w (θ) =
∂

∂L (θ)
F (L ) . (2)

Remark (Monotonicity). Without loss of generality we order the skills θ so that

the wage function θ 7→ w (θ) is strictly increasing given the tax schedule T .7 We

show in Appendix A.2 that, by the Spence-Mirrlees condition, the pre-tax income

function θ 7→ y (θ) is then also strictly increasing. There are therefore one-to-

one maps between skills θ, wages w (θ), and pre-tax incomes y (θ).8 We denote by

fY (y(θ)) = (y′(θ))−1f(θ) the density of incomes and by FY the corresponding c.d.f.

Government. The government chooses the twice-continuously di�erentiable tax

function T : R+ → R. Tax revenue is given by

R =

ˆ
Θ

T (y (θ)) f (θ) dθ.

5The dependence of labor supply on the tax schedule T is left implicit for simplicity. Whenever
necessary, we denote the solution to (1) by l (θ;T ).

6In Section 1.3 below we provide a microfoundation of this production function. An alternative
interpretation of our framework is that di�erent types of workers produce di�erent types of goods
that are imperfect substitutes in household consumption (see, e.g., Acemoglu and Autor (2011)).

7Moreover, we can w.l.o.g. assume that the skill type Θ is the interval [0, 1] and that the distri-
bution f (θ) is uniform. In this case, θ indexes the agent's percentile in the wage distribution

8When we perturb the tax system, the ordering of wages may generally change. Our analysis
does not require that the initial ordering remains una�ected by the tax reforms we consider.
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We de�ne the local rate of progressivity9 of the tax schedule T at income level y as

(minus) the elasticity of the retention rate 1− T ′ (y) with respect to income y,

p (y) ≡ −∂ ln[1− T ′ (y)]

∂ ln y
=

yT ′′ (y)

1− T ′ (y)
.

In particular, the tax schedule has a constant rate of progressivity (CRP) if

T (y) = y − 1− τ
1− p

y1−p, (3)

for p < 1.10 This tax schedule is linear (resp., progressive, regressive), i.e., the

marginal tax rates T ′ (y) and the average tax rates T (y) /y are constant (resp., in-

creasing, decreasing), if p = 0 (resp., p > 0, p < 0).

Equilibrium. An equilibrium given a tax function T is a schedule of labor supplies

{l (θ)}θ∈Θ, labor demands {L (θ)}θ∈Θ, and wages {w (θ)}θ∈Θ such that equations (1)

and (2) hold, the labor markets clear: L (θ) = l (θ) f (θ) for all θ ∈ Θ, and the goods

market clears: F (L ) =
´

Θ
w (θ)L (θ) dθ.

Examples: CES and HSA production functions. We conclude this section by

presenting useful special cases of production functions that we use for some of our

results below. The technology is CES if

F (L ) =

[ˆ
Θ

a (θ) (L (θ))
σ−1
σ dθ

] σ
σ−1

, (4)

for some constant elasticity of substitution σ ∈ [0,∞) and technological parameters

a (·) ∈ R+. The wage schedule is given by w (θ) = a (θ) (L (θ) /F (L ))−1/σ. The

cases σ = 1 and σ = 0 correspond respectively to the Cobb-Douglas and Leontie�

production functions, and wages are exogenous if σ =∞. More generally, the class of

HSA (homothetic demand with a single aggregator) technologies has been introduced

by Matsuyama and Ushchev (2017). They are de�ned non-parametrically as follows:

9See Musgrave and Thin (1948).
10See, e.g., Bénabou (2002); Heathcote, Storesletten, and Violante (2016).
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for all θ ∈ [0, 1], there exists a function s (·; θ) : R+ → R+ such that

w (θ)L (θ)

F (L )
= s

( w (θ)

A (w)
; θ
)
, (5)

where we denote w ≡ {w (θ)}θ∈Θ and A(w) is the solution to
´
s(w(θ)
A ; θ)dθ = 1,

which ensures constant returns to scale.11 That is, the labor share of output of skill

θ is given by a (skill-speci�c) function of its own wage normalized by the common

aggregator A. The HSA class contains as a strict special case the CES production

function with s (x; θ) = (a (θ))σ x1−σ, as well as technologies with variable elasticities

of substitution. Several examples, including the separable Translog cost function, are

discussed in Appendix A.4.3 and in Matsuyama and Ushchev (2017).

1.2 Elasticities

In this section we de�ne the elasticity parameters that determine the economy's ad-

justment to tax reforms. First, it is useful to consider the labor market of a given skill

θ in isolation, i.e., to reason in partial equilibrium. We denote by εSw (θ) and εDw (θ)

the elasticities of the labor supply and labor demand curves in this market. Second,

in general equilibrium, a perturbation of the labor market for skill θ a�ects all other

markets θ′ 6= θ through cross-price e�ects, which we denote by γ (θ′, θ). We proceed

to formally de�ne each of these elasticities, starting with the latter.

Cross-wage elasticities. Consider �rst two distinct labor markets for skills θ and

θ′ 6= θ. We de�ne the elasticity of the wage of type θ′, w (θ′), with respect to the

aggregate labor of type θ, L (θ), as

γ (θ′, θ) ≡ ∂ lnw (θ′)

∂ lnL (θ)
=

L (θ) F ′′
θ′,θ (L )

F ′
θ′ (L )

, ∀θ′ 6= θ (6)

where F ′
θ′ and F ′′

θ′,θ denote the �rst and second partial derivatives of the production

functionF with respect to the labor inputs of types θ′ and θ. The cross-wage elasticity

between two skills θ, θ′ is non-zero if they are imperfect substitutes in production.

We say that the skills are Edgeworth complements if γ (θ′, θ) > 0 and substitutes if

11Matsuyama and Ushchev (2017) provide necessary and su�cient restrictions on the labor share
mappings s (·; θ) such that there exists a well-de�ned production function F generating the demand
system (5).
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γ (θ′, θ) < 0.

Labor demand elasticities. Next, consider the labor market for a given skill θ.

Note that in the previous paragraph we have only de�ned γ (θ′, θ) for skills θ′ 6= θ.12

Now the impact of the aggregate labor e�ort of skill θ on its own wage, ∂ lnw(θ)
∂ lnL(θ)

, may

be di�erent than its impact on the wage of its close neighbors θ′ ≈ θ, lim
θ′→θ

∂ lnw(θ′)
∂ lnL(θ)

≡

γ (θ′, θ). That is, the function θ′ 7→ ∂ lnw(θ′)
∂ lnL(θ)

may be discontinuous at θ′ = θ. This is

the case, e.g., if the production function is CES. We denote by γ (θ, θ) ≡ lim
θ′→θ

∂ lnw(θ′)
∂ lnL(θ)

the complementarity between θ and its neighboring skills, and de�ne the inverse

elasticity of labor demand for skill θ, 1/εDw (θ), as the jump between ∂ lnw(θ)
∂ lnL(θ)

and

γ (θ, θ). Formally,

∂ lnw (θ′)

∂ lnL (θ)
≡ γ (θ′, θ)− 1

εDw (θ)
δ (θ′ − θ) , ∀ (θ, θ′) ∈ Θ2, (7)

where δ (·) denotes the Dirac delta function. Intuitively, this captures the fact that

the marginal productivity of a given skill is a non-constant (e.g., decreasing) function

of the aggregate labor of its own type. Note that the tax incidence formulas we

will derive are valid whether this discontinuity indeed occurs (e.g., if the production

function is CES, see below), or not (e.g., in the microfoundation of Section 1.3 below,

where 1/εDw (θ) = 0 for all θ).

Labor supply elasticities. Finally, we de�ne the elasticities of labor supply l (θ)

with respect to the retention rate r (θ) ≡ 1− T ′ (y (θ)) and the wage w (θ) as13

εSr (θ) ≡ ∂ ln l (θ)

∂ ln r (θ)
=

e (θ)

1 + p (y (θ)) e (θ)
, εSw (θ) ≡ ∂ ln l (θ)

∂ lnw (θ)
= (1− p (y (θ))) εSr (θ) ,

(8)

where e (θ) ≡ v′(l(θ))
l(θ)v′′(l(θ))

. These variables di�er from the standard elasticity e (θ) as

they account for the fact that if the tax schedule is nonlinear, a change in individual

labor supply l (θ) causes endogenously a change in the marginal tax rate T ′ (y (θ))

12We assume throughout that the map θ′ 7→ γ (θ′, θ) is continuous on Θ \ {θ}.
13Since there is a one-to-one map between types θ and incomes y (θ), one can equivalently index

these elasticities by income as εSr (y (θ)) = εSr (θ). We use these two notations interchangeably in
the sequel, and analogously for the labor demand elasticities εDr (θ) , εDw (θ) de�ned above. On the
other hand, the natural change of variables between types θ and incomes y (θ) for the cross-wage
elasticities reads γ(y(θ1), y(θ2)) = (y′(θ2))−1 γ(θ1, θ2). See Appendix A.1.2 for details.
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captured by the rate of progressivity p (y (θ)) of the tax schedule, and hence a further

labor supply adjustment e (θ). Solving for the �xed point leads to the correction term

p (y (θ)) e (θ) in the denominator of εSr (θ) and εSw (θ).14

Examples: CES and HSA production functions. Consider the CES produc-

tion function de�ned by (4). The cross-wage elasticities are then given by γ (θ′, θ) =
1
σ
a (θ) (L (θ) /F (L ))

σ−1
σ and the own-wage elasticities are given by εDw (θ) = σ for

all θ′, θ.15 Note that εDw (θ) > 0 is constant and that γ (θ′, θ) > 0 does not depend

on θ′, implying that a change in the labor supply of type θ has the same e�ect, in

percentage terms, on the wage of every type θ′ 6= θ. Consider next the HSA pro-

duction function de�ned by (5). We then have γ (θ′, θ) = σ(w(θ′)
A(w)

; θ′)−1w(θ)L(θ)
F (L )

, where

σ (x; θ) ≡ 1 − xs′1(x;θ)

s(x;θ)
denotes the elasticity of the labor share function. Note that

these cross-wage elasticities are multiplicatively separable between θ and θ′.

1.3 Microfoundation and su�cient statistics

In this section we argue that the production function we introduced in Section 1.1 can

be microfounded as the reduced form of an underlying model of assignment between

worker skills and tasks involved in production. Thus our analysis is more general and

encompasses both the cases of �xed and endogenous assignment. To show this, we set

up a model that, analogous to Ales, Kurnaz, and Sleet (2015), extends Costinot and

Vogel (2010) by allowing workers to choose their labor supply endogenously (as in

(1)) and the government to tax labor income nonlinearly. All of the technical details

are gathered in Appendix A.3.

Formally, the �nal consumption good is produced using a CES technology over

a continuum of tasks ψ ∈ Ψ, indexed by their skill intensity (e.g., manual, routine,

abstract, etc.). The output of each task is in turn produced linearly using the labor of

the skills θ ∈ Θ that are endogenously assigned to this task. Assuming that high-skill

workers have a comparative advantage in tasks with high skill intensities, the market

clearing conditions for intermediate goods determine a one-to-one matching function

M : Θ → Ψ between skills and tasks in equilibrium � there is positive assortative

14See Appendix A.1.1 for further details. See also Jacquet and Lehmann (2017) and Scheuer and
Werning (2017).

15Denoting by σ (θ′, θ) = −[
∂ ln(w(θ′)/w(θ))
∂ ln(L(θ′)/L(θ)) ]−1 the elasticity of substitution between any two labor

inputs, we have σ (θ′, θ) = σ for all (θ′, θ) ∈ Θ2.

12



matching. It is straightforward to show that this model admits a reduced-form rep-

resentation where the production of the �nal good is performed by a technology over

skills. This reduced-form technology inherits the CES structure (4) of the original

production function over intermediate tasks, except that the technological coe�cients

a (·) now depend on the matching function M , and are thus endogenous to taxes.

Crucially, we show that tax reforms a�ect the equilibrium assignment M only

through their e�ect on individual labor supply choices {L (θ)}θ∈Θ. Mathematically,

this is a consequence of the fact that, �xing labor supplies, none of the equations that

determine the equilibrium depend explicitly on the tax schedule T .16 Intuitively, this

is because individuals always choose the task that maximizes their net wage. But

a tax reform does not alter directly the ranking of wages, as long as marginal tax

rates are below 100 percent. Therefore taxes a�ect the equilibrium sorting of skills

only indirectly, through the labor supply responses that they induce. It follows from

this result that the technological coe�cients a (·;M) of the reduced-form technology

described above can be written without loss of generality as a(·; {L (θ)}θ∈Θ). Substi-

tuting these parameters into (4) yields a production function with the general form

postulated in Section 1.1, F({L (θ)}θ∈Θ).

This reasoning implies in turn that the cross-wage elasticities γ (θ′, θ) ∝ ∂2F
∂L(θ)∂L(θ′)

introduced in (6), where F denotes the reduced-form production function over worker

skills, already account for the potential reassignment of workers into new tasks.17

That is, they represent the impact of an increase in the labor supply of skill θ on the

marginal productivity of skill θ′, leaving everyone else's labor supply unchanged and,

if assignment is endogenous, letting workers be reassigned into di�erent tasks (i.e.,

taking into account the adjustment of the technological coe�cients a(·, {L (θ)}θ∈Θ)).

Therefore, these cross-wage elasticities are su�cient statistics : once expressed as a

function of these parameters, the tax incidence formulas that we will derive in Sections

2 and 3 are valid both when the underlying structure of assignment is �xed and when

it is endogenous to tax reforms. They can be either estimated in the data directly, or

16In particular, total spending on the �nal good (sum of individual disposable incomes plus
government tax revenue) is equal to agents' total gross income, so that the market clearing condition
for the �nal good does not depend directly on the tax schedule.

17Note moreover that, while in a setting with exogenous assignment the inverse labor demand
elasticities 1/εDw are generally non-zero (i.e., there is a discontinuity in the schedule of elasticities
∂ lnw(θ′)
∂ lnL(θ) as θ′ ≈ θ), instead with costless reassignment such a discontinuity would cause workers to

migrate to neighboring tasks, leading to perfectly elastic labor demand curves (i.e., 1/εDw = 0). Our
tax incidence formulas are naturally valid in both cases.
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derived by specifying the underlying structural model (see below).18

Graphical representation. We now represent graphically the cross-wage elastic-

ities that arise in the model we just described, assuming a CES production function

over tasks, and endogenous (costless) assignment of worker skills to these tasks. We

use the calibration of Ales, Kurnaz, and Sleet (2015) who assume a Cobb-Douglas

technology over tasks. We compare these elasticities with those obtained in our base-

line model of Section 1.1, assuming a CES production function over skills. In this

setting we propose two calibrations. The �rst consists of simply shutting down the

endogenous reassignment channel in the previous model while keeping all of the other

parameters unchanged, hence assuming a Cobb-Douglas production function over

skills (σ = 1). The second, more relevant, calibration consists of directly estimating

a CES production function over labor supplies: we then use the value σ = 3.1 in

(4) estimated by Heathcote, Storesletten, and Violante (2016). The calibration is

described in more detail in Section 4.

The left panel of Figure 1 plots the resulting cross-wage elasticities γ (y, y∗) in the

model of endogenous assignment, for changes in labor supply at the 10th, 50th and 90th

percentiles of the wage distribution. They are V-shaped and increasing in the distance

|y − y∗|. A higher labor e�ort of agents y∗ lowers wages on a non-degenerate interval

of incomes around y∗ and raises those of much higher or much lower incomes. Note

that the shape of the cross-wage elasticities in Figure 1 is similar to those of Teulings

(2005). The right panel compares these elasticities with those obtained with a CES

production function (4) and �xed assignment, for both values σ = 1 (dashed line)

and σ = 3.1 (solid line). In this case, the wages of agents y∗ decrease, while those of

everyone else increase, by the same amount in percentage terms (recall that γ (y, y∗)

depends only on y∗ if the technology is CES). The discontinuity at y∗ is represented

by the Dirac arrows in the �gure. Letting workers be reassigned to di�erent tasks in

response to an exogenous increase in the labor supply of agents y∗ thus spreads out

the cross-wage e�ects around y ≈ y∗ and removes the discontinuity that arises when

matching is kept �xed.

18We extend our baseline environment to a multi-dimensional Roy model as in Rothschild and
Scheuer (2013) in Section 5 and show that the same su�cient-statistic insight continues to hold.
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Figure 1: Cross wage elasticities in the model with endogenous costless reassignment of skills to

tasks. Left panel: Elasticities y 7→ γ (y, y∗) with y∗ in the 1st (solid curve), 50th (dashed curve), 90th

(dashed-dotted curve) deciles. Right panel: Comparison of the cross-wage elasticity (perturbation

at the 90th percentile) in the models with endogenous reassignment (dashed-dotted curve) and with

exogenous assignment (CES production) for σ = 1 (dashed line) and σ = 3.1 (solid line).

2 Incidence of tax reforms

Consider a given initial, potentially suboptimal, tax schedule T , e.g., the U.S. tax

code. In this section we derive closed-form formulas for the �rst-order e�ects of

arbitrary local perturbations of this tax schedule (�tax reforms�) on individual labor

supplies, wages and utilities.

2.1 E�ects on labor supply

As in the case of exogenous wages (Saez, 2001), analyzing the incidence of tax reforms

relies crucially on solving for each individual's change in labor supply in terms of

behavioral elasticities. This problem is, however, much more involved in general

equilibrium. If wages are exogenous, a change in the tax rate of a given individual,

say θ, induces only a change in the labor e�ort of that agent (measured by the

elasticity (8)). In the general equilibrium setting, instead, this labor supply response

of type θ a�ects the wage, and hence the labor supply, of every other skill θ′ 6= θ. This

in turn feeds back into the wage distribution, which further impacts labor supplies,

and so on. Representing the total e�ect of this in�nite sequence caused by arbitrarily

non-linear tax reforms is thus a priori a complex task.19

19We could de�ne, for each speci�c tax reform one might consider implementing, a �policy elas-
ticity� (as in, e.g., Hendren (2015), Piketty and Saez (2013)), equal to each individual's total labor
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The key step towards the general characterization of the economic incidence of

taxes, and our �rst main theoretical contribution, consists of showing that this prob-

lem can be mathematically formulated as an integral equation (Lemma 1).20 We can

thus apply the tools and results of the theory of integral equations to solve in closed-

form for the labor supply adjustments (Proposition 1). The incidence on wages and

utilities is then straightforward to derive (Corollary 2).

Tax reforms and Gateaux derivatives. Formally, consider an arbitrary non-

linear reform of the initial tax schedule T (·). This tax reform can be represented by

a continuously di�erentiable function T̂ (·) on R+, so that the perturbed tax schedule

is T (·) + µT̂ (·), where µ ∈ R parametrizes the size of the reform.21 Our aim is to

compute the �rst-order e�ect of this perturbation on individual labor supply (i.e., the

solution to the �rst-order condition (1)), when the magnitude of the tax change is

small, i.e., as µ → 0. This is formally given by the Gateaux derivative of the labor

supply functional T 7→ l (θ;T ) in the direction T̂ , that is,22

l̂ (θ) ≡ lim
µ→0

1

µ
[ l(θ;T + µT̂ )− l (θ;T ) ].

The variable l̂ (θ) gives the change in the labor supply of type θ in response to the

tax reform T̂ , taking into account all the general equilibrium e�ects induced by the

endogeneity of wages. We de�ne analogously the changes in individual wages ŵ (θ),

utilities Û (θ) and government revenue R̂.

Integral equation (IE). The following lemma provides an implicit characteriza-

tion of the incidence of an arbitrary tax reform T̂ on labor supplies.

supply response to the corresponding reform. The key challenge of the incidence problem consists
of expressing this total labor supply response in terms of the structural elasticity parameters intro-
duced in Section 1.2. Proposition 1 below gives the policy elasticity in closed-form in terms of these
structural parameters.

20The general theory of linear integral equations is exposed in, e.g., Tricomi (1985), Kress (2014),
and, as a concise introduction, in Zemyan (2012). Moreover, closed-form solutions can be derived in
many cases (see Polyanin and Manzhirov (2008)). Finally, numerical techniques are widely available
and can be easily implemented (see, e.g., Press (2007) and Section 2.6 in Zemyan (2012)), leading
to straightforward quantitative evaluations of the incidence of arbitrary tax reforms (see Section 4).

21A tax reform that is a special example of this general de�nition consists of an increase in the
marginal tax rate on a small interval (Piketty (1997); Saez (2001)). We formalize and analyze this
class of perturbations in Section 3.1 below.

22The notation l̂ (θ) ignores for simplicity the dependence of this derivatives on the initial tax
schedule T and on the tax reform T̂ .
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Lemma 1. The e�ect of a tax reform T̂ of the initial tax schedule T on individual

labor supplies, l̂ (·), is the solution to the functional equation:

l̂ (θ)

l (θ)
= − εr (θ)

T̂ ′ (y (θ))

1− T ′ (y (θ))
+ εw (θ)

ˆ
Θ

γ (θ, θ′)
l̂ (θ′)

l (θ′)
dθ′ (9)

for all θ ∈ Θ, where εr (θ) and εw (θ) are the elasticities of equilibrium labor of skill

θ with respect to the retention rate and the wage, de�ned by

1

εr (θ)
≡ 1

εSr (θ)
+

1

εDw (θ)
and

1

εw (θ)
≡ 1

εSw (θ)
+

1

εDw (θ)
.

Proof. See Appendix B.1.1.

Formula (9) is a linear Fredholm integral equation of the second kind with kernel

εw (θ) γ (θ, θ′). Its unknown, which appears under the integral sign, is the function

θ 7→ l̂ (θ). We start by providing the economic meaning of this equation.

Due to the reform, the retention rate r (θ) = 1−T ′ (y (θ)) of individual θ changes,

in percentage terms, by r̂ (θ) = − T̂ ′(y(θ))
1−T ′(y(θ))

. This tax reform induces a direct percent-

age change in labor e�ort l (θ) equal to εr (θ)× r̂ (θ), where εr (θ) is the elasticity of

equilibrium labor on the market for skill θ. This is the expression one would obtain

by considering the labor market θ in isolation and ignoring the cross-e�ects between

markets. It resembles the expression one obtains assuming exogenous wages, with

one di�erence: if the marginal product of labor is decreasing, then the initial labor

supply adjustment (say, decrease) due to the tax reform causes an own-wage increase

determined by 1/εDw (θ), which in turn raises labor supply and dampens the initial

response. Thus the relevant elasticity satis�es εr (θ) ≤ εSr (θ).

In general equilibrium, the labor supply of type θ is also impacted indirectly by

the change in all other individuals' labor supplies, due to the skill complementarities

in production. Speci�cally, the change in labor supply of each type θ′, l̂ (θ′), triggers

a change in the wage of type θ equal to γ (θ, θ′) l̂ (θ′), and thus a further adjustment

in her labor supply equal to εw (θ) γ (θ, θ′) l̂ (θ′). Summing these e�ects over skills

θ′ ∈ Θ leads to formula (9).

Solution to the IE and resolvent. We now characterize the solution to the

integral equation (9).
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Proposition 1. Assume that the condition
´

Θ2 |εw (θ) γ (θ, θ′) |2dθdθ′ < 1 holds.23

The unique solution to the integral equation (9) is given by

l̂ (θ)

l (θ)
= − εr (θ)

T̂ ′ (y (θ))

1− T ′ (y (θ))
− εw (θ)

ˆ
Θ

Γ (θ, θ′) εr (θ′)
T̂ ′ (y (θ′))

1− T ′ (y (θ′))
dθ′, (10)

where for all (θ, θ′) ∈ Θ2, the resolvent Γ (θ, θ′) is de�ned by

Γ (θ, θ′) ≡
∞∑
n=1

Γn (θ, θ′) , (11)

with Γ1 (θ, θ′) = γ (θ, θ′) and for all n ≥ 2,

Γn (θ, θ′) =

ˆ
Θ

Γn−1 (θ, θ′′) εw (θ′′) γ (θ′′, θ′) dθ′′.

Proof. See Appendix B.1.2.

The mathematical representation (10) of the solution to the integral equation (9)

has the following economic meaning. The �rst term on the right hand side of (10),

−εr (θ) T̂ ′(y(θ))
1−T ′(y(θ))

, is the partial-equilibrium e�ect of the reform on labor supply l (θ),

as already described in equation (9). The second (integral) term accounts for the

cross-wage e�ects in general equilibrium. Note that this integral term has the same

structure as the corresponding term in formula (9), except that: (i) the unknown

labor supply changes l̂ (θ′) are now replaced by their (known) partial-equilibrium

counterparts −εr (θ′) T̂ ′(y(θ′))
1−T ′(y(θ′))

; and (ii) the structural cross-wage elasticity γ (θ, θ′) is

replaced by the �resolvent� cross-wage elasticity Γ (θ, θ′).

The elasticity variable Γ (θ, θ′), de�ned by the series (11), expresses the total e�ect

of the labor supply of type θ′ on the wage of type θ, i.e., it accounts for the in�nite

sequence of general equilibrium adjustments induced by the complementarities in

production. The �rst iterated kernel (n = 1) in the series (11) is simply Γ1 (θ, θ′) =

γ (θ, θ′). It accounts for the impact of the labor supply of type θ′ on the wage of

type θ through direct cross-wage e�ects. The second iterated kernel (n = 2) in (11)

accounts for the impact of the labor supply of θ′ on the wage of θ, indirectly through

23This technical condition ensures that the in�nite series (11) converges. We provide below
su�cient conditions on primitives such that this condition holds. In more general cases it can be
easily veri�ed numerically. Finally, when it is not satis�ed, we can more generally express the
solution with a representation similar to (10) but with a more complex resolvent (see Section 2.4 in
Zemyan (2012)).
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the behavior of third parties θ′′. This term reads

Γ2 (θ, θ′) =

ˆ
Θ

γ (θ, θ′′) εw (θ′′) γ (θ′′, θ′) dθ′′. (12)

For any θ′, a percentage change in the labor supply of θ′ induces a percentage change

in the wage of any other type θ′′ by γ (θ′′, θ′), and hence a percentage change in the

labor supply of θ′′ given by εw (θ′′) γ (θ′′, θ′). This in turn a�ects the wage of type θ by

the amount γ (θ, θ′′) εw (θ′′) γ (θ′′, θ′). Summing over all intermediate types θ′′ leads to

expression (12). An inductive reasoning shows similarly that the terms n ≥ 3 in the

resolvent series (11) account for the impact of the labor supply of θ′ on the wage of θ

through n successive stages of cross-wage e�ects, e.g., for n = 3, θ′ → θ′′ → θ′′′ → θ.

The case of separable cross-wage elasticities. A particularly tractable special

case of Proposition 1 is obtained when the cross-wage elasticities are multiplicatively

separable between skills. This occurs in particular when the production function is

CES or, more generally, HSA. We then obtain the following corollary.

Corollary 1. Suppose that the cross-wage elasticities γ (θ′, θ) are multiplicatively

separable, i.e., there exist functions γ1 and γ2 such that for all (θ, θ′), γ (θ′, θ) =

γ1 (θ′) γ2 (θ). The resolvent cross-wage elasticities are then given by

Γ (θ′, θ) =
γ (θ′, θ)

1−
´

Θ
εw (s) γ (s, s) ds

. (13)

In particular, if the production function is CES, the integral in the denominator of

(13) is equal to 1
σEyE [yεw (y)].

Proof. See Appendix B.1.4.

Equation (13) shows that, if the cross-wage elasticities are separable between θ

and θ′, the total impact Γ (θ, θ′) of a change in the labor supply of type θ′ on the wage

of type θ is proportional to the direct (structural) e�ect γ (θ, θ′). This is because each

round of cross-wage general equilibrium e�ects, i.e., each term in the resolvent series

(11), is a fraction of the �rst round. In particular, with a CES technology, the cross-

wage elasticity γ (θ, θ′) depends only on θ′ and is independent of θ, that is, a change

in the aggregate labor supply of type θ′ induces the same percentage adjustment in

the wage of every skill θ 6= θ′. More generally, suppose that the cross-wage elasticities
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are the sum of multiplicatively separable functions: γ (θ′, θ) =
∑n

k=1 γ
k
1 (θ′) γk2 (θ),

for some n ≥ 1. This general separable functional form is useful because it can

approximate arbitrarily closely any given map of (non-separable) elasticities γ (θ′, θ),

and the solution to the Fredholm integral equation is continuous in its kernel. In

Appendix A.4.3, we show that the solution (10) to the integral equation remains

very tractable in this case: speci�cally, the resolvent cross-wage elasticities are given

non-recursively by Γ (θ′, θ) =
∑

1≤i,j≤n Aij γ
i
1 (θ′) γj2 (θ) for some known constants Aij.

Su�cient conditions on primitives ensuring convergence of the resolvent.

Suppose that the production function is CES with parameter σ > 0, that the initial

tax schedule is CRP with parameter p < 1, and that the disutility of labor is isoe-

lastic with parameter e > 0. We show in Appendix B.1.4 that we have in this case
1
σEyE [yεw (y)] < 1 so that, by formula (13), Γ (θ, θ′) < ∞. The convergence of the

resolvent series (11) is thus satis�ed.

One-to-one map between structural and resolvent cross-wage elasticities.

For applied purposes, we can use both the structural parameters γ (θ, θ′) or the re-

solvent parameters Γ (θ, θ′) as primitive cross-wage elasticity variables: our tax inci-

dence formulas can be expressed in terms of either of them. Some empirical studies

may evaluate the structural parameters γ (θ, θ′) of the production function directly,

while others may estimate the full general-equilibrium impact Γ (θ, θ′), including the

spillovers generated by the initial shock. In the latter case, it may be useful to re-

cover the structural elasticities γ (θ, θ′) as a function of the (observed) higher-order

elasticities Γ (θ, θ′), e.g., for counterfactual analysis. We do so in Appendix B.1.3 by

showing that γ (θ, θ′) can be expressed as the solution to an integral equation with a

kernel determined by Γ (θ, θ′).

2.2 E�ects on wages and utility

We can now easily obtain the incidence of an arbitrary tax reform T̂ on individual

wages and utilities.

Corollary 2. The incidence of a tax reform T̂ of the initial tax schedule T on indi-

vidual wages, ŵ (·), is given by

ŵ (θ)

w (θ)
=

1

εSw (θ)

[
εSr (θ)

T̂ ′ (y (θ))

1− T ′ (y (θ))
+
l̂ (θ)

l (θ)

]
, (14)
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for all θ ∈ Θ, where the labor supply response l̂ (θ) is given by (10). The incidence

on individual utilities, Û (·), is given by

Û (θ) = −T̂ (y (θ)) + (1− T ′ (y (θ))) y (θ)
ŵ (θ)

w (θ)
. (15)

Proof. See Appendix B.2.

Corollary 2 gives the changes in individual wages due to the tax reform T̂ , as a

function of the labor supply changes characterized by Proposition 1. Its meaning is

straightforward. Multiplying both sides of (14) by εSw (θ) simply gives the percentage

adjustment of type-θ labor supply, l̂(θ)
l(θ)

, as the sum of its response in the case of

exogenous wages, −εSr T̂ ′

1−T ′ , and the e�ect induced by the percentage wage change,

εSw × ŵ
w
.

Equation (15) gives the impact of the reform on individual welfare. The �rst term

on the right hand side, −T̂ (y (θ)), is due to the fact that a higher tax payment makes

the individual poorer and hence reduces her utility. The second term accounts for the

change in net income due to the wage adjustment ŵ (θ). If wages were exogenous, so

that ŵ (θ) = 0 in (15), the utility of agent θ would respond one-for-one with changes in

her total tax payment T̂ (y (θ)) and would not be a�ected by changes in her marginal

tax rate T̂ ′ (y (θ)) � this is a direct consequence of the envelope theorem. In general

equilibrium, however, this is no longer true because marginal tax rates cause labor

supply adjustments which in turn a�ect wages. We show in Appendix B.2 that if

all pairs of types are Edgeworth complements and assignment of workers to tasks is

exogenous, then a higher marginal tax rate at income y (θ) raises the utility of agents

with skill θ and lowers that of all other agents.

3 E�ects of tax reforms on government revenue

Having derived the change in equilibrium labor and wages in response to a tax reform

T̂ (Proposition 1 and Corollary 2), the impact on government revenue directly follows:

R̂(T̂ ) =

ˆ
Θ

T̂ (y (θ)) f (θ) dθ +

ˆ
Θ

T ′ (y (θ))

[
l̂ (θ)

l (θ)
+
ŵ (θ)

w (θ)

]
y (θ) f (θ) dθ. (16)

The �rst term on the right hand side of (16) is the statutory e�ect of the tax reform

T̂ (·), i.e., the mechanical change in government revenue assuming that the individual
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labor supply and her wage remain constant. The second term is the behavioral e�ect

of the reform. The labor supply and wage adjustments l̂ (θ) and ŵ (θ) both induce

a change in government revenue proportional to the marginal tax rate T ′ (y (θ)).

Summing these e�ects over all individuals using the density f (·) leads to equation

(16). The remainder of this section is devoted to deriving the economic implications of

this formula. In Appendix C, we extend our analysis and characterize more generally

the e�ects of tax reforms on social welfare.

3.1 Preliminaries

Elementary tax reforms. From now on, we focus without loss of generality on a

speci�c class of �elementary� tax reforms, represented by the step function T̂ (y) =

(1− FY (y∗))−1 I{y≥y∗} for a given income level y∗.24 That is, the total tax liability

increases by the constant amount (1− FY (y∗))−1 for any income y above y∗, and the

marginal tax rates are perturbed by the Dirac delta function at income y∗, i.e. T̂ ′ (y) =

(1− FY (y∗))−1 δ (y − y∗). Intuitively, this reform consists of raising the marginal tax

rate at only one income level y∗ ∈ R+, which implies a uniform increase in the total

tax payment of agents with income y > y∗.25 The normalization by (1− FY (y∗))−1

implies that the statutory increase in government revenue due to the reform (i.e., the

�rst term on the r.h.s. of (16)) is equal to $1. We denote by R̂ (y∗) the total e�ect

(16) of this elementary tax reform on government revenue.26

Partial equilibrium benchmark. In the case of exogenous wages, the incidence

on government revenue is given by expression (16) with ŵ (θ) = 0 and l̂ (θ) =

−εSr (θ) T̂ ′(y(θ))
1−T ′(y(θ))

. Applying this formula to the elementary tax reform at income

24Note that the function I{y≥y∗} is not di�erentiable. We show in Appendix C.1 that we can
nevertheless use our theory to analyze this reform by applying (10) to a sequence of smooth pertur-
bations {T̂ ′n (y)}n≥1 that converges to the Dirac delta function δ(y − y∗). This notation simpli�es
the exposition and is made only for convenience. All our formulas can be easily written for any
smooth tax reform T̂ rather than step functions.

25Heuristically, consider a perturbation that raises the marginal tax rate by dT ′ on a small income
interval [y∗ − dy, y∗], so that the total tax payment above income y∗ raises by the amount dT ′ × dy
equal to, say, $1. This class of tax reforms has been introduced by Saez (2001). Then shrink the size
of the income interval on which the tax rate is increased, i.e. dy → 0, while keeping the increase in
the tax payment above y∗ �xed at $1. The limit of the marginal tax rate increase dT ′ is the Dirac
measure at y∗, and the change in the total tax bill converges to its c.d.f., the step function I{y≥y∗}.

26Any tax reform T̂ can be expressed as a linear combination of such income-speci�c
elementary perturbations, so that is incidence on tax revenue is given by R̂(T̂ ) =´
R̂ (y∗) (1− FY (y∗)) T̂ ′ (y∗) dy∗. See Golosov, Tsyvinski, and Werquin (2014) for details.
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y∗ easily leads to (see Saez (2001)):

R̂ex (y∗) = 1− T ′ (y∗) εSr (y∗)

1− T ′ (y∗)
y∗fY (y∗)

1− FY (y∗)
. (17)

Equation (17) expresses the impact of an increase in the marginal tax rate at income

y∗ as the sum of the statutory increase in government revenue, which is normalized

to $1 by construction, and the behavioral revenue loss equal to the product of: (i) the

endogenous reduction in the labor income of agent y∗, y∗

1−T ′(y∗)ε
S
r (y∗); (ii) the share

T ′ (y∗) of this income change that accrues to the government; and (iii) the hazard

rate of the income distribution, fY (y∗)
1−FY (y∗)

. The hazard rate is a cost-bene�t ratio that

measures the fraction fY (y∗) of agents whose labor supply is distorted by the reform,

relative to the fraction 1−FY (y∗) of agents whose tax bill increases lump-sum. Note

that the second term in the right hand side of (17), εSr
T ′

1−T ′
y∗fY
1−FY

, captures how much

revenue, per unit of mechanical increase in taxes, is lost through adjustments in

behaviour. It is an expression for the marginal excess burden of a tax reform.

3.2 E�ects on government revenue

We now derive and analyze the incidence of tax reforms on government revenue in gen-

eral equilibrium and compare it to the expression (17) obtained assuming exogenous

wages.

Proposition 2. The incidence of the elementary tax reform at income y∗ on govern-

ment revenue is given by

R̂ (y∗) = R̂ex (y∗) +
εr (y∗)

1− T ′ (y∗)
(18)

×
ˆ [

T ′ (y∗)
(
1 + εSw (y∗)

)
− T ′ (y)

(
1 + εSw (y)

)]
Γ̄ (y, y∗)

y fY (y)

1− FY (y∗)
dy.

where Γ̄ (y, y∗) ≡
(
1+ εSw(y)

εDw (y)

)−1
Γ (y, y∗) are normalized resolvent cross-wage elasticities.

Proof. See Appendix C.2.

Sketch of proof. To understand formula (18), it is useful to �rst sketch its proof.

The direct e�ect of the marginal tax rate increase at income y∗ is to lower labor supply

of these agents proportionally to εr (y∗). This induces two additional e�ects in general
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equilibrium. First, complementarities in production imply that the wage of any agent

with income y 6= y∗ changes (say, decreases), in percentage terms, by Γ (y, y∗)×εr (y∗),

so that her income decreases by
(
1 + εSw (y)

)
y×Γ (y, y∗) εr (y∗). A share T ′ (y) of this

income loss accrues to the government, leading to the second term in the square

brackets of (18). Second, the non-constant marginal product of labor implies that

the wage of agents with income y∗ changes (say, increases), in percentage terms, by
1

εDw (y∗)
×εr (y∗). Thus their income increases by

(
1 + εSw (y∗)

)
y∗× 1

εDw (y∗)
εr (y∗), a share

T ′ (y∗) of which accrues to the government.

The key step is to then sum over the whole population and apply Euler's ho-

mogeneous function theorem. Intuitively, constant returns to scale imply that the

own-wage gains of agents with income y∗ are exactly compensated by the aggregate

cross-wage e�ects of the other incomes y 6= y∗.27 This leads to an expression for the

own-wage elasticity 1
εDw (y∗)

as a function of an integral of the cross-wage elasticities

Γ (y, y∗), thus leading to the �rst term in the square brackets of (18).

Linear tax schedule. Assume that the labor supply elasticities εSw (·) are constant.
Since the income changes of all agents cancel in the aggregate (by Euler's theorem)

for �xed levels of labor supply, this assumption implies that the income changes of

all agents also cancel once we account for the labor supply adjustments. That is,

the reshu�ing of wages due to the tax reform has distributional e�ects but keeps the

economy's aggregate income constant. Now suppose in addition that the initial tax

schedule is linear, so that every agent faces the same marginal tax rate. We then

immediately obtain that the government's tax revenue gain coming from the higher

income of agents y∗ is exactly compensated by the tax revenue losses coming from the

rest of the population (formally, the square bracket in formula (18) is zero). Therefore

tax reforms have the same e�ect on tax revenue as in the environment with exogenous

wages.

Corollary 3. Suppose that the disutility of labor is isoelastic and the initial tax sched-

ule is linear. Then the incidence of an arbitrary tax reform on government revenue

27Euler's homogeneous function theorem in its most standard form is written in terms of the
structural cross-wage elasticities γ (y, y∗). This �rst round of wage changes then induces labor supply
changes, which in turn lead to further rounds of own- and cross-wage e�ects in general equilibrium.
Because Euler's theorem applies at every stage, the aggregate e�ect of all these wage adjustments
is again equal to zero, so that the relationship can be expressed in terms of the resolvent cross-wage
elasticities Γ (y, y∗) (or, more rigorously, Γ̄ (y, y∗)). It is this formula that we use here; see Appendix
A.1.2 for details.
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is identical to that obtained assuming exogenous wages: R̂ (y∗) = R̂ex (y∗) for all y∗.

Proof. See Appendix C.2.

Non-linear tax schedule. Suppose now, more generally, that the initial tax sched-

ule is non-linear. In this case, as in the previous paragraph, aggregate income remains

unchanged in response to a tax reform due to Euler's theorem. However, the distri-

butional implications of the tax reform now lead to non-trivial e�ects on government

revenue (formally, the square bracket in formula (18) is non-zero). Indeed, a zero-sum

transfer of income from one agent to another is no longer neutral since these workers

pay di�erent tax rates to the government on their respective income gains and losses.

To further characterize the general-equilibrium contribution to government revenue

when the tax schedule is non-linear, assume again that the elasticities of labor sup-

ply εSw (·) are constant (independent of y), which occurs if the disutility of labor is

isoelastic and the initial tax schedule is CRP de�ned in (3). Moreover, assume that

the elasticities of labor demand εDw (·) are also constant, which occurs either when

the production function is CES (see (4)), or in the microfoundation with endogenous

and costless assignment of workers to tasks (in which case 1/εDw (y) = 0 for all y, see

Sections 1.3 and A.3 for details). The general formula of Proposition 2 can then be

simpli�ed as follows.

Corollary 4. Suppose that the disutility of labor is isoelastic, the initial tax schedule

is CRP, and the labor demand elasticities are constant. We then have

R̂ (y∗) = R̂ex (y∗) +
εr

1− T ′ (y∗)
y∗fY (y∗)

1− FY (y∗)
(1 + εSw) (19)

×
{ 1

εDw
(T ′ (y∗)− E [T ′ (y)])− 1

y∗fY (y∗)
Cov

(
T ′ (y) ; y Γ̄ (y, y∗)

)}
.

(i) If the production function is CES, then the covariance term on the right hand

side of (19) is constant.28 Letting φ = 1+εSw
σ+εSw

and T̄ ′ = E [yT ′ (y)] /Ey, we then obtain

R̂ (y∗) = R̂ex (y∗) + φ εSr
T ′ (y∗)− T̄ ′

1− T ′ (y∗)
y∗fY (y∗)

1− FY (y∗)
, (20)

(ii) If the production function is microfounded as in the assignment model of Sec-

tion 1.3, then 1/εDw (y) = 0 for all y in formula (19).

28This is because we then have Γ̄ (y, y∗) = γ(y, y∗) = 1
σE[y]y

∗fY (y∗).
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Proof. See Appendix C.3.

Corollary 4 delivers novel and important insights. We �rst discuss both special

cases of formula (19) in turn and then conclude on the economic implications of this

result.

CES production. Consider �rst the case where the production function is CES

(formula (20)). Suppose that the marginal tax rates are increasing in the initial

economy, i.e., the rate of progressivity is p > 0. Consider a reform that raises the

marginal tax rate at income y∗, so that the labor supply of agents with income y∗

decreases, which in turn raises their own wage and lowers everyone else's wage. As

explained above, by Euler's homogeneous function theorem and the fact that the

labor supply elasticities are constant, the resulting income gain of agents with income

y∗ is exactly compensated in the aggregate by the income losses of the other agents

y 6= y∗. Now suppose that agents with income y∗ are high income earners, so that

their marginal tax rate T ′ (y∗) is larger than the (income-weighted) average marginal

tax rate T̄ ′ in the population. Then the government's revenue gain coming from the

higher income of agents y∗, which is proportional to T ′ (y∗), more than compensates

the tax revenue loss coming from the rest of the population, which is proportional to

T̄ ′. We therefore obtain that R̂ (y∗) > R̂ex (y∗). Therefore, the general-equilibrium

contribution of the tax reform on government revenue is positive (resp., negative) if

the marginal tax rate at y∗ is larger (resp., smaller) than the income-weighted average

marginal tax rate in the economy. Moreover, the larger the income y∗ at which the

marginal tax rate is increased, the larger the gain in government revenue relative to

the exogenous-wage setting. That is, �trickle-down� forces imply higher bene�ts of

raising, not lowering, the marginal tax rates on high incomes.29

Endogenous assignment. Consider next the case where the production function is

microfounded as in Section 1.3, with endogenous and costless (re-)sorting of skills into

tasks. In this case, the inverse labor demand elasticities 1/εDw are equal to zero and

equation (19) implies that the general-equilibrium contribution to the excess burden

of the elementary tax reform is determined by the covariance between the initial

marginal tax rates T ′ (·) and the production complementarities Γ̄ (·, y∗) with agent y∗.

29In Appendix C we extend this analysis to the case where the government's objective is to
improve social welfare rather than tax revenue.
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If this covariance is positive (resp., negative) at a given income y∗, then the general-

equilibrium forces raise (resp., lower) the cost of increasing the marginal tax rate

at income y∗, compared to the partial-equilibrium benchmark (17). Moreover, if this

covariance is increasing with y∗ (resp., decreasing), then the general-equilibrium forces

raise (resp., lower) the cost of increasing the progressivity of the tax code. Section 4

evaluates this formula numerically for calibrated values of the cross-wage elasticities,

but we can already anticipate the qualitative results. The left panel of Figure 1 clearly

shows that the covariance between incomes and the cross-wage elasticities is positive

for low values of y∗ (solid curve) and negative for large values of y∗ (dashed-dotted

curve). Therefore, if the marginal tax rates are initially increasing with income, the

covariance term Cov(T ′ (y) ; y Γ̄ (y, y∗)) decreases with y∗. Consequently, the same

qualitative insight as in the CES model holds: the general-equilibrium contribution

to government revenue of a tax increase at income y∗ increases with y∗. In other

words, both terms in the curly brackets of formula (19) push in the same direction.

Conclusion: progressivity and trickle-down. The previous discussion implies

that, starting from a progressive tax schedule, the standard partial-equilibrium for-

mula (17) underestimates the revenue gains from raising the marginal tax rates at

the top and lowering them at the bottom, i.e., from further raising the progressivity

of the tax schedule.30 Conversely, starting from a regressive tax schedule, the partial-

equilibrium formula overestimates the gains (or underestimates the losses) from in-

creasing marginal tax rates at the top. Thus, contrary to conventional wisdom that

is based on optimal tax theory (see, e.g., Stiglitz (1982) and Section 6 below), the

�trickle down� forces caused by the endogeneity of wages may either raise or lower

the bene�ts of raising high-income tax rates, depending on the shape of marginal tax

rates in the initial tax system. In particular, since the tax code in the U.S. is progres-

sive (Heathcote, Storesletten, and Violante (2016)), the bene�ts of raising further its

progressivity (i.e., increasing the marginal tax rates on high incomes) are larger than

a model with �xed wages would predict. We therefore conclude that that one should

be cautious, in practice, when applying the results of the theory of optimal taxation

in general equilibrium (see Section 6) to partial reforms of a suboptimal tax code.

30In Appendix C.3, D.1.3 and F, we extend this result to the cases where the government has a
social welfare objective that is no longer Rawlsian (i.e., revenue maximization) and agents' utility
functions have income e�ects. Both of these extensions add a term that dampens the result of
Corollary 4, but do not overturn it quantitatively for empirically reasonable values of the parameters.
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4 Numerical simulations

In this section we calibrate our model to the U.S. economy and evaluate quantitatively

the e�ects of the elementary tax reforms on government revenue. First, in Section 4.1,

we show that the calibration of Saez (2001), which consists of inferring the wage dis-

tribution from the observed income distribution and the agents' preferences, can be

extended to a general equilibrium setting. We illustrate numerically the result of

formula (20) and show that the novel general-equilibrium e�ects are sizeable for plau-

sible parameter calibrations. We further explore various extensions in the Appendix

that show that these results are robust to relaxing the speci�c assumptions made in

Corollary 4. Second, in Section 4.2, we build on the calibration of Ales, Kurnaz, and

Sleet (2015) to evaluate the e�ects of tax reforms in the environment described in

Sections 1.3 and A.3 where the assignment of workers to tasks is endogenous and

costless.

4.1 Main speci�cation

We assume that the disutility of labor v (l) is isoelastic with parameter e = 0.33

(Chetty, 2012),31 and that the U.S. tax schedule is CRP with parameters p = 0.151

and τ = −3 (Heathcote, Storesletten, and Violante (2016)). To match the U.S. yearly

earnings distribution, we assume that fY (·) is log-normal with mean 10 and variance

0.95 up to income y = $150, 000, above which we append a Pareto distribution with

coe�cient π = 1.5, i.e., lim
ȳ→∞

E [y|y ≥ ȳ] /ȳ = π
π−1

= 3 (Diamond and Saez, 2011). As

in Saez (2001), we infer the distribution of wages w(θ) from the earnings distribution

and the individual �rst-order conditions (1). After choosing values for the elasticities

of substitution, we obtain the remaining parameters of the production function. See

Appendix F.1 for a more detailed description of the calibration procedure. We �rst

study the case of a CES production function and then extend our results to a Translog

production function, for which the elasticities of substitution between pairs of skills

vary with the distance between them. The latter analysis is relegated to Appendix

F.2.

In this section, we assume that the production function is CES and illustrate nu-

31In Appendix F.1.2, we discuss the connection between our model and the empirical literature
that estimates the elasticity of taxable income (see, e.g., Saez, Slemrod, and Giertz (2012) for a
survey). We show that the estimate for the taxable income elasticity at income y (θ) maps in our
model to the equilibrium labor elasticity variable εr(θ) de�ned in Lemma 1.
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merically the analytical result of Corollary 4 (formula (20)). We choose an elasticity

of substitution σ ∈ {0.6 ; 3.1}. The value σ = 0.6 is taken from Dustmann, Frattini,

and Preston (2013) who study the impact of immigration along the U.K. wage dis-

tribution and, as in our framework, group workers according to their position in the

wage distribution.32,33 The value σ = 3.1 is taken from Heathcote, Storesletten, and

Violante (2016), who structurally estimate this CES parameter for the U.S. by target-

ing cross-sectional moments of the joint equilibrium distribution of wages, hours, and

consumption. There is no clear consensus in the empirical literature on how respon-

sive relative wages are to changes in labor supply, and therefore on the appropriate

value of σ;34 our two values are on the lower and higher sides of the typical empirical

estimates.

Our results for the CES speci�cation are illustrated in Figure 2. We plot the

impact on government revenue of elementary tax reforms at each income level in the

model with exogenous wages (solid curve, equation (17)) and in general equilibrium

(dashed curve, equation (20)), as a function of the income y(θ) where the marginal

tax rate is perturbed. A value of 0.7, say, at a given income y(θ), means that for each

additional dollar of tax revenue mechanically levied by the tax reform at y(θ), the

government e�ectively gains 70 cents, while 30 cents are lost through the behavioral

responses of individuals; that is, the marginal excess burden of this tax reform is 30

percent.

Consider �rst the solid curve: it has a U-shaped pattern which re�ects the shape of
y∗fY (y∗)
1−FY (y∗)

in (17). This is a well-known �nding in the literature (Diamond, 1998; Saez,

2001). The di�erence between the dashed and solid curves captures the additional

revenue e�ect due to the endogeneity of wages. In line with our analytical result

of formula (20), we observe that this di�erence is positive for intermediate and high

incomes (starting from about $77,000, where the marginal tax rate equals its income-

32This literature is a useful benchmark because it studies the impact on relative wages of labor
supply shocks of certain skills, which is exactly the channel we want to analyze in our tax setting
(except that for us the labor supply shocks are caused by tax reforms rather than immigration
in�ows).

33Card (1990) and Borjas et al. (1997) also measure the skill type by the relative wage position
when studying the impact of immigration on native wages. The setting of Dustmann, Frattini, and
Preston (2013) �ts our setting particularly well because they group workers into �ne groups: 20
groups that contain 5% of the workforce respectively. In Appendix F.1.3, we formally show that the
elasticity of substitution estimated in a framework with discrete earnings groups (e.g., percentiles
or quartiles) can be used to calibrate a CES production function with a continuum of types.

34See, e.g., the debate on the impact of immigration on natives' wages (Peri and Yasenov, 2015;
Borjas, 2015).
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Figure 2: Revenue gains of elementary tax reforms at each income y(θ). Solid curves: exogenous

wages (equation (17)). Dashed curves: CES technology with σ = 0.6 (left panel) and σ = 3.1 (right

panel) (equation (20)).

weighted average). Raising the marginal tax rates for these income levels is more

desirable, in terms of government revenue, when the general equilibrium e�ects are

taken into account, while the opposite holds for low income levels. The magnitude of

the di�erence is substantial: the marginal excess burden from increasing the marginal

tax rate on income $200,000 is equal to 0.22 cents (resp., 0.30 cents) per dollar if

σ = 0.6 (resp., σ = 3.1) instead of 0.34 if σ = ∞, i.e., it is reduced by 35 percent

(resp., 12 percent) due to the general equilibrium e�ects. Hence, the model with

exogenous wages signi�cantly underestimates the revenue gains from increasing the

progressivity of the tax code.

We explore the robustness of these results in Appendix F.2. We �rst consider other

speci�cations of the U.S. tax schedule, in particular, we account for the phasing-out

of transfers, as estimated by Guner, Rauh, and Ventura (2017), which implies high

marginal tax rates at the bottom of the income distribution. Our main insight regard-

ing the additional bene�t of raising progressivity in general equilibrium is mitigated

but not reversed. Second, we compute the e�ects of the elementary tax reforms on

social welfare. As discussed in Corollary 2, the general equilibrium forces imply an

increase (resp., decrease) in wages and utilities for individuals whose marginal tax

rate increases (resp., for everyone else). This channel reduces the bene�ts of raising

the progressivity of the tax schedule. Nevertheless our main result still holds if the

social marginal welfare weights fall su�ciently fast with income. Third, we consider

Translog production functions with distance-dependent elasticities of substitution in

Appendix F.1.4; again, our main insights continue to hold.
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4.2 Endogenous assignment

We now investigate the e�ects of tax reforms on government revenue in the economy

described in Sections 1.3 and A.3, with endogenous and costless reassignment of skills

to tasks. We calibrate the technological parameters of a Cobb-Douglas production

function over tasks as well as the productivity of each skill type for each task using

the estimates of Ales, Kurnaz, and Sleet (2015) � we refer to their paper for details.

We assume the same (CRP) initial tax schedule as in Section 4.1. We described

the shape of the cross-wage elasticities in this environment in Section 1.3. We use

these elasticities in our tax incidence formulas of Sections 2 and 3, and compare the

resulting e�ects on government revenue with those obtained in Section 4.1 for a CES

technology with �xed assignment.

E�ects of tax reforms on government revenue. Figure 3 shows the govern-

ment revenue impact of elementary tax reforms at each income level. Note that the

calibration of Ales, Kurnaz, and Sleet (2015) assumes a bounded skill distribution,

with a maximum income level (corresponding to the top percentile in the horizontal

axis of the �gure) below the Pareto tail. As a consequence, this calibration is unable

to capture the large revenue gains from raising taxes on high incomes observed in

Figure 2 above. Importantly, the boundedness of the domain also implies inversely

U-shaped, rather than U-shaped, gains from tax increases, re�ecting the inverse U-

shaped optimum that they obtain in their quantitative analysis. Therefore, the shape

and quantitative magnitudes of the revenue gains from tax reforms that we obtained

in Figure 2, which account for the essential role played by the Pareto distribution of

top incomes (Saez (2001)), are more realistic than those of Figure 3 below.

In both panels of Figure 3, the solid curve gives the revenue e�ects (17) in the

model with exogenous wages, using the same wage distribution (with bounded sup-

port) as in Ales, Kurnaz, and Sleet (2015). The dashed curve is for the model with

endogenous and costless reassignment (formula (19)), for the Cobb-Douglas produc-

tion function over tasks estimated by Ales, Kurnaz, and Sleet (2015). The dashed-

dotted curve is for the general equilibrium model of Section 4.1 with �xed assignment

(formula (20)). As in our discussion in Section 1.3, we consider two calibrations for

the latter model. First, in the left panel we assume a Cobb-Douglas production func-

tion (σ = 1), i.e., we shut down the reassignment channel in the calibration of Ales,

Kurnaz, and Sleet (2015). Second, more relevant for our purposes, in the right panel
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Figure 3: Revenue gains of elementary tax reforms at each income y(θ), using the calibration of

Ales, Kurnaz, and Sleet (2015) for the wage distribution. Solid curves: exogenous wages (equation

(17)). Dashed curves: Cobb-Douglas technology over tasks with endogenous costless reassignment

of skills to tasks. Dotted curve: CES technology over labor supplies with σ = 1 (left panel) and

σ = 3.1 (right panel) and �xed assignment.

we assume a CES production function with σ = 3.1, following the direct estimation

of a technology over labor supplies of di�erent skills by Heathcote, Storesletten, and

Violante (2016) (see Section 4.1 above).

Qualitatively, as anticipated in Section 3.2, the �xed and endogenous assignment

models deliver similar policy implications: the government revenue gains are higher

(resp., lower) due to the endogeneity of wages if the marginal tax rates are raised on

high (resp., low) incomes. Quantitatively, if we assume a Cobb-Douglas production

function in the model with �xed assignment (σ = 1), we �nd that the endogenous reas-

signment of workers into new tasks mitigates the magnitude of the general-equilibrium

e�ects on revenue: while still signi�cant, they are around 30 percent35 of those ob-

tained with �xed assignment. However, if we use a value of σ that is directly estimated

for a CES production function over skills (σ = 3.1 taken from Heathcote, Storesletten,

and Violante (2016)), we obtain that the implications of tax reforms for government

revenue are quantitatively very similar.

35Precisely, they are 40 percent at the 80th percentile, 30 percent at the 90th percentile and 20
percent at the 100th percentile.
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5 Generalizations

In this section we extend our tax incidence techniques and results to more general

and alternative environments.

Income e�ects. In Appendix D.1, we extend the model of Section 1 to a general

utility function U (c, l) over consumption and labor supply. This speci�cation allows

for arbitrary substitution and income e�ects. In addition to the elasticities de�ned

in Section 1.2, we de�ne the income e�ect parameter in response to a change in the

agent's non-labor income. We show that the e�ect of an arbitrary tax reform T̂ on

individual labor supply is given by an integral equation analogous to (9), except that

the partial-equilibrium response (�rst term on the r.h.s.) now also accounts for the

income e�ect of the tax change. Its solution can then be straightforwardly derived as

in Proposition 1. We also extend formula (20) to this setting.

Endogenous participation decisions. In Appendix D.2, we extend the model of

Section 1 by letting agents choose their labor supply both on the intensive (hours) and

extensive (participation) margins. Heterogeneity is now two-dimensional: individuals

are indexed by their skill and their �xed cost of working. We de�ne the elasticity of

participation with respect to a change in the average tax rate and again show that

the e�ect of an arbitrary tax reform T̂ on the labor supply of a given skill is given

by an integral equation analogous to (9). Its solution can then be straightforwardly

derived as in Proposition 1.

Multiple sectors and Roy model. In Appendix D.3.2 and D.4, we analyze

the incidence of tax reforms in settings with an alternative production structure.

There are N sectors (or education groups, occupations, etc.). Heterogeneity is multi-

dimensional: agents are indexed by a vector of sector-speci�c skills. They choose

both the sector in which to work and their level of labor supply. Note that the wage

distributions of di�erent sectors overlap. The tax schedule depends only on income.

This structure is the same as in Rothschild and Scheuer (2013).

Suppose �rst that the assignment of agents to sectors does not change in response

to a small tax reform � e.g., there is a �xed switching cost. We then show that the

incidence of an arbitrary tax reform T̂ on the labor supplies of agents is given by a

linear system of integral equations. Its solution is analogous to that of (9) (Propo-
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sition 1), the only di�erence being that the incidence now naturally depends on a

larger number of cross-wage elasticities across both skills and sectors. We then apply

these results to the so-called �canonical model� (Acemoglu and Autor, 2011), where

individuals are grouped according to their level of education. We derive a result sim-

ilar to that of Corollary 4 and show that our main insight on the progressivity of the

tax code carries over to this setting. Suppose next that an in�nitesimal tax change

triggers a costless endogenous re-assignment of workers into di�erent sectors. Analo-

gous to our discussion of su�cient statistics in Section 1.3, we show that conditional

on the cross-wage elasticities that we use as primitives, the tax incidence formulas

are identical to those obtained in the �xed assignment model.

6 Optimal taxation

In this section we show that our tax incidence analysis delivers a characterization

of the optimal (i.e., welfare-maximizing) tax schedule as a by-product. We �rst

formally introduce the social welfare criterion. We then present simple extensions of

two seminal formulas to the general equilibrium environment: the optimal marginal

tax rate formula of Diamond (1998) and the optimal top tax rate formula of Saez

(2001).36 The general analysis and technical details are relegated to Appendix E.

Appendix F.3 contains the numerical simulations.

6.1 Welfare function and welfare weights

The government evaluates social welfare by means of a concave function G : R→ R.
Letting λ denote the marginal value of public funds, we thus de�ne social welfare in

monetary units by

G =
1

λ

ˆ
Θ

G (U (θ)) f (θ) dθ.

The optimal tax schedule maximizes social welfare G subject to the constraint that

government revenue R is non-negative.

36Importantly, contrary to Saez (2001), this formula indeed characterizes the optimal top tax
rate only if the whole tax schedule is set optimally. Our analysis of Section 3.2 shows that it is no
longer valid if the initial tax schedule is suboptimal. We return to this point and discuss it further
in Sections 6.3 and 6.4 below.
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We denote by g (θ), or equivalently g (y (θ)), the marginal social welfare weight37

associated with individuals of type θ as

g (θ) =
1

λ
G′ (U (θ)) . (21)

The weight g (θ) is the social value of giving one additional unit of consumption to

individuals with type θ, relative to distributing it uniformly to the whole population.

6.2 Optimal tax schedule

We can easily extend our analysis to compute the e�ect Ĝ(T̂ ) of arbitrary tax reforms

T̂ on social welfare (see Appendix C.2): we only need to add the e�ect on government

revenue derived in Section 3.2 to the e�ects on individual utilities derived in Section

2.2, aggregating the latter and weighting them by the welfare weights g (θ). Moreover,

a characterization of the optimum tax schedule can then be directly obtained from

this incidence analysis, by imposing that the welfare e�ects of any tax reform of the

initial tax schedule T are equal to zero. Corollary 7 in Appendix E.1.1 provides such

a formula in our general environment. In this section, we focus on the special case of

a CES production function. This implies a parsimonious generalization of the result

of Stiglitz (1982) derived in a two-skill environment, and connects it to the formula

of Diamond (1998) derived for exogenous wages.

Proposition 3. Assume that the production function is CES with elasticity of sub-

stitution σ > 0. Then the optimal marginal tax rate at income y∗ satis�es

T ′ (y∗)

1− T ′ (y∗)
=

[ 1

εSr (y∗)
+

1

εDr (y∗)

]
(1− ḡ (y∗))

1− FY (y∗)

y∗fY (y∗)
+
g (y∗)− 1

σ
, (22)

where εDr (y∗) = σ and ḡ (y∗) ≡ E[g (y) |y ≥ y∗] is the average marginal social welfare

weight above income y∗.

Proof. See Appendix E.1.2.

The �rst term on the right hand side of (22) shows that, analogous to the op-

timal tax formula obtained in the model with exogenous wages (Diamond (1998),

Saez (2001)), the marginal tax rate at income y∗ is is decreasing in the average so-

cial marginal welfare weight ḡ (y∗), and increasing in the hazard rate of the income

37See, e.g., Saez and Stantcheva (2016).
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distribution 1−FY (y∗)
y∗fY (y∗)

. However, the standard inverse elasticity rule is modi�ed: the

relevant parameter is now the sum of the inverse elasticity of labor supply and the

inverse elasticity of labor demand. Since εDw (y∗) = σ > 0, this novel force tends to

raise optimal marginal tax rates. Intuitively, increasing the marginal tax rate at y∗

leads these agents to lower their labor supply, which raises their own wage and thus

mitigates their behavioral response.

The second term, (g (y∗)− 1) /σ captures the fact that the wage and welfare of

type θ∗ increase due to a higher marginal tax rate T ′ (y∗), at the expense of the other

individuals whose wage and welfare decrease (see Section 2.2). Suppose that the

government values the welfare of individuals θ∗ less than average, i.e., g (y∗) < 1.38

This negative externality induced by the behavior of θ∗ implies that the cost of raising

the marginal tax rate at y∗ is higher than in partial equilibrium, and tends to lower

the optimal tax rate. Conversely, the government gains by raising the optimal tax

rates of individuals y∗ whose welfare is valued more than average, i.e., g (y∗) > 1.

This induces these agents to work less and earn a higher wage, which makes them

strictly better o�, at the expense of the other individuals in the economy, whose

wage decreases. This term creates therefore a force for higher marginal tax rates at

the bottom and lower marginal tax rates at the top if the government has a strictly

concave social objective.

In Appendix F.3, we evaluate the optimality condition (22) numerically and �nd

that the optimal U-shape of the marginal tax rates found by Diamond (1998) is

more pronounced when general equilibrium e�ects are taken into account. We show

moreover that the results remain quantitatively very similar in the case of a Translog

production function with distance-dependent elasticities of substitution.

6.3 Optimal top tax rate

Assuming that the tax schedule is set optimally as in (22), we can now derive the

implications for the asymptotic optimal marginal tax rate. Let Π > 1 denote the

Pareto coe�cient of the tail of the income distribution, that is, 1 − FY (y) ∼ c y−Π

as y →∞ for some constant c. We can show that if the production function is CES

and the top marginal tax rate that applies to these incomes is constant, then the

tail of the income distribution has the same Pareto coe�cient at the optimum as in

the current data, even though the wage distribution is endogenous. In other words,

38Note that the average social marginal welfare weight in the economy is equal to 1.

36



shifting up or down the top tax rate modi�es wages, but the tail parameter Π of the

income distribution stays constant. We obtain the following Corollary.

Corollary 5. Assume that the production function is CES with parameter σ > 0,

that the disutility of labor is isoelastic with parameter e, and that incomes are Pareto

distributed at the tail with coe�cient Π > 1. Assume moreover that the social marginal

welfare weights at the top converge to a constant ḡ. Then the top tax rate of the optimal

tax schedule is given by

τ ∗ =
1− ḡ

1− ḡ + Π εr ζ
, with εr =

e

1 + e
σ

and ζ =
1

1− Π εr
σ

. (23)

In particular, τ ∗ is strictly smaller than the optimal top tax rate in the model with

exogenous wages (σ =∞).

Proof. See Appendix E.1.3.

Formula (23) generalizes the familiar top tax rate result of Saez (2001) (in which

εr = εSr and ζ = 1) to a CES production function. There is one new su�cient

statistic, the elasticity of substitution between skills in production σ, that is no longer

restricted to being in�nite. This proposition implies a strictly lower top marginal tax

rate than if wages were exogenous. Immediate calculations of the optimal top tax

rate illustrate this formula.39 Suppose that ḡ = 0, Π = 2, e = 0.5, and σ = 1.5.40

We immediately obtain that the optimal tax rate on top incomes is equal to τ ∗
ex

= 50

percent in the model with exogenous wages, and falls to τ ∗ = 40 percent once the

general equilibrium e�ects are taken into account. Suppose instead that Π = 1.5

and e = 0.33, then we get τ ∗
ex

= 66 percent and τ ∗ = 64 percent. In this case the

trickle-down forces barely a�ect the optimum tax rate quantitatively. We provide

more comprehensive comparative statics in Appendix E.1.3.

Note that, at �rst sight, this result may seem at odds with those of Section 3.2.

We just showed that even when the government's objective is to maximize revenue,

the optimal top tax rate is always lower than when wages are exogenous. Instead,

in Section 3.2 we argued that the general-equilibrium forces could lead to additional

39Again, it is important to keep in mind that equation (23) holds only if the whole tax schedule
is set optimally; see our discussion below.

40These values are meant to be only illustrative but they are in the range of those estimated in
the empirical literature. See the calibration in Section 4.
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bene�ts of raising marginal tax rates on high incomes. The reason for this discrep-

ancy is that the optimum tax code is U-shaped and thus has a form of regressivity

� relatively high marginal tax rates at the bottom and relatively low marginal tax

rates at the top. Instead in Section 3.2, we analyzed partial reforms of a suboptimal,

namely progressive, tax code, with low marginal tax rates at the bottom and high

rates at the top. In the latter environment, even though the overall gains of reform-

ing the suboptimal schedule always point towards the optimal (U-shaped) tax code,

the general-equilibrium contribution to these overall gains tends to mitigate (resp.,

reinforce) the partial-equilibrium contribution if the tax system being reformed is

progressive (resp., regressive). We discuss this point further in the next section and

Appendix E.1.4.

6.4 Further results and discussion

In Appendix E.1.4, we extend the result of Diamond (1998); Saez (2001) regarding

the U-shape of the optimum tax schedule. After de�ning a relevant �exogenous-wage

optimum� benchmark in our environment,41 we show in Corollary 8 that the general-

equilibrium correction to the optimal tax rates is itself U-shaped. This result echoes

those of Proposition 2 and Corollary 4, according to which the general-equilibrium

e�ects of tax reforms have a shape that is inherited from that of the initial tax

schedule (which, here, is the hypothetical optimal tax schedule assuming exogenous

wages). Intuitively, since a fraction T ′ (y) of the endogenous wage changes accrues to

the government, tax revenue (i.e., Rawlsian welfare) increases by a larger amount in

an economy with initially progressive taxes, whereas the converse is true when the tax

rates are high at the bottom and low at the top, as in the optimum tax system (3).

These observations allow us to unify the insights of Section 3.2 (according to which

the endogeneity of wages raises the bene�ts of increasing the top income marginal tax

rates) and those of Section 6.3 (according to which the optimal top tax rate is lower

than in partial equilibrium). The key take-away is therefore that insights about the

optimum tax schedule may actually be reversed when considering partial reforms of

the current, suboptimal tax code.

41We follow Rothschild and Scheuer (2013, 2014) and consider a self-con�rming policy equilibrium.
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7 Conclusion

We developed a variational approach for the study of nonlinear tax reforms in general

equilibrium. Our methodology consisted of using the tools of the theory of integral

equations to characterize the incidence of reforming a given tax schedule, e.g. the

current U.S. tax code, as well as the optimal tax schedule. The formulas we derived

are expressed in terms of su�cient statistics. The direct empirical estimation of these

cross-wage elasticities is an important avenue for future research.
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A Proofs of Section 1

A.1 Elasticities

A.1.1 Labor supply elasticities

Proof of equation (8).
Labor supply elasticity with respect to the retention rate along the linear budget

constraint. The �rst-order condition (1) can be rewritten as v′ (l (θ)) = r (θ)w (θ), where r (θ) =

1 − T ′ (w (θ) l (θ)) is the retention rate of agent θ. We assume that this �rst-order condition has a

unique solution l (θ). The �rst-order e�ect of perturbing the retention rate r (θ) by dr (θ) on the

labor supply l (θ), keeping w (θ) constant, is obtained by a Taylor approximation of the �rst-order

condition in the perturbed equilibrium,

v′ (l (θ) + dl (θ)) = (r (θ) + dr (θ))w (θ) ,

around the initial equilibrium. Straightforward algebra shows that

dl (θ)

l (θ)
= − v′ (l (θ))

l (θ) v′′ (l (θ))

dr (θ)

r (θ)
,

which immediately leads the expression for the elasticity e (θ) = v′(l(θ))
l(θ)v′′(l(θ)) .

Labor supply elasticity with respect to the retention rate along the non-linear budget

constraint. The perturbed individual �rst-order condition reads

v′ (l (θ) + dl (θ)) = [1− T ′ (w (θ) (l (θ) + dl (θ))) + dr (θ)]w (θ) .

A �rst-order Taylor expansion leads to

dl (θ)

l (θ)
=

e (θ)

1 + e (θ) w(θ)l(θ)T ′′(w(θ)l(θ))
1−T ′(w(θ)l(θ))

dr (θ)

1− T ′ (w (θ) l (θ))
,

which yields the �rst part of equation (8).

Labor supply elasticity with respect to the wage along the non-linear budget con-

straint. The perturbed individual �rst-order condition reads

v′ (l (θ) + dl (θ)) = [1− T ′ ((w (θ) + dw (θ)) (l (θ) + dl (θ)))] (w (θ) + dw (θ)) .

A �rst-order Taylor expansion then implies

dl (θ)

l (θ)
=

(
1− w(θ)l(θ)T ′′(w(θ)l(θ))

1−T ′(w(θ)l(θ))

)
v′(l(θ))

l(θ)v′′(l(θ))

1 + v′(l(θ))
l(θ)v′′(l(θ))

w(θ)l(θ)T ′′(w(θ)l(θ))
1−T ′(w(θ)l(θ))

dw (θ)

w (θ)
,

which yields the second part of equation (8).
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Assumptions on the elasticities. We assume throughout our analysis that these elasticities

of labor supply are well-de�ned, which requires that

|p (y (θ)) e (θ)| < 1

for all θ. The condition p (y (θ)) e (θ) > −1 ensures that the second-order condition of the individual

problem is satis�ed, so that (1) characterizes a local maximum of their utility. The condition

p (y (θ)) e (θ) < 1 ensures the convergence of the labor supply response towards the �xed point that

characterizes the elasticities along the nonlinear budget constraint in equation (8). We assume in

addition that ∣∣εSw (θ) /εDw (θ)
∣∣ < 1

so that the equilibrium labor elasticities introduced in Lemma 1 are well de�ned. These conditions

can be easily checked for a given tax schedule. The former is also required in the partial-equilibrium

model with exogenous wages, while the latter is always satis�ed in our microfoundation of Section

1.3.

A.1.2 Wage elasticities and Euler's theorem

We provide two versions of Euler's homogeneous function theorem in our economy.

Lemma 2. The following relationship between the own-wage elasticity and the structural cross-

wage elasticities is satis�ed: for all y∗,

− 1

εDw (y∗)
y∗fY (y∗) +

ˆ
R+

γ(y, y∗)yfY (y) dy = 0. (24)

Equivalently, this can be expressed as a relationship between the own-wage elasticity and the GE

cross-wage elasticities: for all y∗,

− 1

εDw (y∗)
y∗fY (y∗) +

ˆ
R+

Γ (y, y∗)

1 + εSw (y) /εDw (y)
yfY (y) dy = 0. (25)

Proof of Lemma 2.
Equation ( 24). Constant returns to scale imply that F ({λL (θ)}θ∈Θ) = λF ({λL (θ)}θ∈Θ)

for all λ. Di�erentiating both sides of this equation with respect to and evaluating at λ = 1 leads

to F ({λL (θ)}θ∈Θ) =
´

Θ
L (θ)w (θ) dθ. Di�erentiating both sides of this equation with respect to

L (θ′), using de�nitions (6) and (7) and rearranging terms leads to

− 1

εDw (θ′)
y (θ′) f (θ′) +

ˆ
Θ

γ (θ, θ′) y (θ) f (θ) dθ = 0. (26)
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Equivalently, changing variables from types θ to incomes y (θ) and de�ning

γ (y (θ) , y (θ′)) ≡
(
dy

dθ
(θ′)

)−1

γ (θ, θ′) (27)

leads to (24).

Equation ( 25). Euler's theorem (24) implies that

ˆ
Θ

ŵ (θ)

w (θ)
y (θ) f (θ) dθ =

ˆ
Θ

[
− 1

εDw (θ)
l̂ (θ) +

ˆ
Θ

γ (θ, θ′) l̂ (θ′) dθ′
]
y (θ) f (θ) dθ

=−
ˆ

Θ

{
1

εDw (θ)
y (θ) f (θ) +

ˆ
Θ

γ (θ′, θ) y (θ′) f (θ′) dθ′
}
l̂ (θ) dθ = 0.

Now, using formulas (10) and (14) applied to the elementary tax reform δ (y − y∗), we can rewrite

the previous equality as

0 =

ˆ
Θ

1

εSw (θ)

[
εSr (θ)

δ (y (θ)− y∗)
1− T ′ (y (θ))

+ l̂ (θ)

]
y (θ) f (θ) dθ

=

ˆ
R+

1

εSw (y)

[
εSr (y)

δ (y − y∗)
1− T ′ (y)

− εr (y)
δ (y − y∗)
1− T ′ (y)

− εw (y)
Γ (y, y∗) εr (y∗)

1− T ′ (y∗)

]
yf (y) dy

=
1

1− T ′ (y∗)
εr (y∗)

[
1

εDw (y∗)
y∗f (y∗)−

ˆ
R+

Γ (y, y∗)

1 + εSw (y) /εDw (y∗)
yf (y) dy

]
,

where the last equality follows from the fact that
εSr (y∗)−εr(y∗)

εSw(y∗)
= εr(y∗)

εDw (y∗)
and εw(y)

εSw(y)
= 1

1+εSw(y)/εDw (y∗)
.

This leads to formula (25).

A.2 Reduced-form production function

In this section, we consider the reduced-form production function F({L (θ)}θ∈Θ) introduced in

Section 1.1. We show that itimplies a monotone mapping between wages and incomes, y′(w) ≥ 0,

or equivalently between types and incomes y′(θ) ≥ 0.

General technology. First, note that the individual �rst-order condition (1) implies that the

elasticity of income with respect to the wage (i.e., the di�erence between the incomes y1, y2 of two

agents with di�erent wages w1, w2 in the cross-sectional distribution) is given by

w (θ)

y (w (θ))
y′(w (θ)) = 1 + εSw (θ) .

This equation is the equivalent of Lemma 1 from Saez (2001) in our setting. It shows that y′(w) > 0

if and only if εSw > −1. We then show that εSw < −1 would violate the Spence-Mirrlees condition.

We have

εSw (θ) = (1− p (y (θ)))
e (θ)

1 + p (y (θ)) e (θ)
< −1 ⇐⇒ e (θ) < −1.
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Now, the Spence-Mirrlees condition requires that v′
(
y
w

)
1
w is decreasing in w. This is equivalent to

−v′′
( y
w

) y

w3
− v′

( y
w

) 1

w2
< 0 ⇐⇒ −1 <

v′
(
y
w

)
y
wv
′′
(
y
w

) .
The right hand side of the last inequality is the labot supply elasticity e. This concludes the proof.

CES technology. We now show that if the production function is CES, the monotone mapping

between types and wages, which is ensured for a given tax schedule by appropriately ordering the

types, is preserved for any (possibly non-local) tax reform. This implies that the ordering of types

does not change between the wage distribution calibrated using current data and the one implied by

the optimal tax schedule. Without loss of generality we assume that types are uniformly distributed

on the unit interval Θ = [0, 1], so that f (θ) = 1 for all θ. For a CES production function, recall that

the wage of type θ is given by:

w(θ) = a(θ)

(
l(θ)

F (L )

)− 1
σ

.

This implies
w′(θ)

w(θ)
=
a′(θ)

a(θ)
− 1

σ

l′(θ)

l(θ)
=
a′(θ)

a(θ)
− 1

σ

1

l(θ)

dl(θ)

dw(θ)
w′(θ),

and hence
w′(θ)

w(θ)

(
1 +

εSw(θ)

σ

)
=
a′(θ)

a(θ)
.

This shows that w′(θ) has the same sign as a′(θ) if we have

1 +
εSw(θ)

σ
> 0.

Note that this is the condition that ensures that the equilibrium labor elasticities εw(θ) (introduced

in Lemma 1) are well de�ned, which we assume throughout. Note that this condition always holds if

the Spence-Mirrlees condition is ful�lled and σ ≥ 1. It also holds for any σ ≥ 0 if εSw (θ) > 0, which

holds whenever the local rate of progressivity satis�es p (y (θ)) ≤ 1. Therefore the sign of w′(θ) is

the same as that of a′(θ) independently of the tax system.

A.3 Microfoundation of the production function

In this section we describe the microfoundation of the production function Y = F({L (θ)}θ∈Θ).

We extend the model of endogenous assignment of skills to tasks of Costinot and Vogel (2010) to

incorporate endogenous labor supply choices by agents and nonlinear labor income taxes.

There is a continuum of mass one of agents indexed by their skill, θ ∈ Θ = [θ, θ̄] and a continuum

of tasks (e.g., manual, routine, abstract, etc.) indexed by their skill intensity, ψ ∈ Ψ = [ψ, ψ̄]. We

denote by f the density of skills θ ∈ Θ in the population. Let A (θ, ψ) be the product of a unit of

labor of skill θ employed in task ψ. We assume that high-skill workers have a comparative advantage

48



in tasks with high skill intensity, i.e., A (θ, ψ) is strictly log-supermodular:

A (θ′, ψ′)A (θ, ψ) > A (θ, ψ′)A (θ′, ψ) , ∀θ′ > θ and ψ′ > ψ. (28)

Individuals. An agent with skill θ earns wage w (θ) which he takes as given. The �rst-order

condition for labor supply is given by

v′ (l (θ)) = [1− T ′ (w (θ) l (θ))]w (θ) . (29)

We assume that there is a unique solution l (θ) > 0 for all θ, and denote by c (θ) the agent's

consumption of the �nal good.

Final good �rm. The �nal good Y is produced using as inputs the output Y (ψ) of each task

ψ ∈ Ψ. For simplicity and as in Costinot and Vogel (2010), we assume that the production function

is CES, so that the �nal good output is given by

Y =

{ˆ ψ̄

ψ

B (ψ) [Y (ψ)]
σ−1
σ dψ

} σ
σ−1

.

The �nal good �rm chooses the quantities of inputs Y (ψ) of each type ψ to maximize its pro�t, i.e.,

it solves:

max
{Y (ψ)}ψ∈Ψ

Y −
ˆ

Ψ

p (ψ)Y (ψ) dψ,

where p (ψ) is the price of task ψ which the �rm takes as given. The �rst-order conditions read:

∀ψ ∈ Ψ,

Y (ψ) = [p (ψ)]−σ [B (ψ)]σ Y. (30)

Intermediate good �rms. The output of task ψ is produced linearly by intermediate �rms that

hire the labor L (θ | ψ) of skills θ ∈ Θ that they hire, so that

Y (ψ) =

ˆ
Θ

A (θ, ψ)L (θ | ψ) dθ.

The intermediate good �rm of type ψ chooses its demand for labor L (θ) of each skill θ to maximize

its pro�t taking the wage w (θ) as given, i.e., it solves:

max
{L(θ)}θ∈Θ

p (ψ)Y (ψ)−
ˆ

Θ

w (θ)L (θ | ψ) dθ.
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The �rst-order condition implies that this �rm is willing to hire any quantity of labor that is supplied

by the workers of type θ as long as their wage is given by

w (θ) = p (ψ)A (θ, ψ) , if L (θ | ψ) > 0. (31)

Moreover, the wage of any skill θ that is not employed in task ψ must satisfy

w (θ) ≥ p (ψ)A (θ, ψ) , if L (θ | ψ) = 0. (32)

Market clearing. We �rst impose that the market for the �nal good market clears. This condition

reads:

Y =

ˆ
Θ

c (θ) f (θ) dθ +R,

where

R ≡
ˆ

Θ

T (w (θ) l (θ)) f (θ) dθ

is the government revenue in the initial equilibrium, that it uses to buy the �nal good. Using the

agents' and the government budget constraints, this can be rewritten as:

Y =

ˆ
Θ

w (θ) l (θ) f (θ) dθ. (33)

Second, we impose that the market for each intermediate good ψ ∈ Ψ clears. For simplicity,

we assume at the outset that there is a one-to-one matching function M : Θ → Ψ between skills

and tasks � we show below that it is indeed the case in equilibrium. Letting ψ = M (θ) be the task

assigned to skill θ, we must then have

ˆ M(θ)

ψ

Y (ψ) dψ =

ˆ θ

θ

A (θ′,M (θ′))L (θ′ |M (θ′)) dθ′,

or simply Y (ψ) dψ = A (θ,M (θ))L (θ |M (θ)) dθ. This implies: ∀θ ∈ Θ,

Y (M (θ))M ′ (θ) = A (θ,M (θ))L (θ |M (θ)) . (34)

Formally, this condition is obtained by substituting for L (θ | ψ) = δ{ψ=M(θ)} in the equation Y (ψ) =´
Θ
A (θ, ψ)L (θ | ψ) dθ, where δ is the dirac delta function, and changing variables from skills to tasks

to compute the integral.

Third, we impose that the market for labor of each skill θ ∈ Θ clears. These conditions read:

∀θ ∈ Θ,

l (θ) f (θ) = L (θ |M (θ)) . (35)
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Competitive equilibrium. Given a tax function T : R+ → R, an equilibrium consists of a sched-

ule of labor supplies {l (θ)}θ∈Θ, labor demands {L (θ | ψ)}θ∈Θ,ψ∈Ψ, intermediate goods {Y (ψ)}ψ∈Ψ,

�nal good Y , wages {w (θ)}θ∈Θ, prices {p (ψ)}ψ∈Ψ, and a matching function M : Θ→ Ψ such that

equations (29) to (35) hold.

Equilibrium assignment. The �rst part of the analysis consists of proving the existence of the

continuous and strictly increasing one-to-one matching function M : Θ → Ψ with M(θ) = ψ and

M(θ̄) = ψ̄. That is, there is positive assortative matching. The proof is identical to that in Costinot

and Vogel (2010). The second part of the analysis consists of characterizing the matching function

and the wage schedule. Speci�cally, we show that

M ′ (θ) =
A (θ,M (θ)) l (θ) f (θ)

[p (M (θ))]
−σ

[B (M (θ))]
σ
Y

(36)

with M(θ) = ψ and M(θ̄) = ψ̄, and where Y is given by (33) and p (M (θ)) is given by (31).

w′ (θ)

w (θ)
=

A′1 (θ,M (θ))

A (θ,M (θ))
. (37)

Proof of equations (36) and (37). Equation (36), which characterizes the equilibrium matching

as the solution to a nonlinear di�erential equation, is a direct consequence of the market clearing

equation (34), in which we use (30) to substitute for Y (M (θ)). Equation (37), which characterizes

the equilibrium wage schedule, is a consequence of the �rms' pro�t maximization conditions (31).

Speci�cally, we have

w (θ) = p (M (θ))A (θ,M (θ))

w (θ + dθ) ≥ p (M (θ))A (θ + dθ,M (θ))

and analogously,

w (θ + dθ) = p (M (θ + dθ))A (θ + dθ,M (θ + dθ))

w (θ) ≥ p (M (θ + dθ))A (θ,M (θ + dθ)) .

These easily imply bounds on [w (θ + dθ)− w (θ)]/dθ. Letting dθ → 0 yields the result.

This analysis implies the endogeneity of labor supply does not alter Costinot and Vogel (2010)'s

results. Indeed, Costinot and Vogel (2010) allow for an arbitrary supply of skills V (θ), which we

can interpret in our framework as the density of labor supply, V (θ) = l (θ) f (θ), where l (θ) is �xed

at its equilibrium value determined by (29).

Reduced form production function. Equilibrium assignment of skills to taxes is endogenous

to taxes � we denote by M (· | T ) : Θ → Ψ the matching function with T as an explicit argument.

The main result, for our purposes, is that the tax schedule T a�ects the equilibrium assignment only
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through its e�ect on agents' labor supply choices L ≡ {l (θ) f (θ)}θ∈Θ. Indeed, note that none of

the equations (30)-(35), which de�ne the equilibrium for given labor supply levels {l (θ)}θ∈Θ, depend

directly on T . This implies that if two distinct tax schedules lead to the same equilibrium labor

supply choices L , they will also lead to the same assignment of skills to tasks M . Therefore, the

matching function M (· | T ) can be rewritten as M (· | L ).

This result implies that the model can be summarized by a reduced-form production function

F (L ) over the labor supplies of di�erent skills in the population. To see this, note that the

production function (over tasks) of the �nal good can be written as

Y =

{ˆ ψ̄

ψ

B (ψ) [Y (ψ)]
σ−1
σ dψ

} σ
σ−1

=

{ˆ θ̄

θ

B (M (θ)) [Y (M (θ))]
σ−1
σ M ′ (θ) dθ

} σ
σ−1

=

{ˆ θ̄

θ

B (M (θ)) [A (θ,M (θ)) l (θ) f (θ)]
σ−1
σ [M ′ (θ)]

1
σ dθ

} σ
σ−1

,

where the second equality follows from a change of variables from tasks to skills using the one-to-one

map M between the two variables, and the third equality uses the market clearing conditions (34)

and (35) to substitute for Y (M (θ)). Now, rearrange the terms in this expression to obtain:

Y =

{ˆ θ̄

θ

a (θ,M) [l (θ) f (θ)]
σ−1
σ dθ

} σ
σ−1

, (38)

where we let

a (θ,M) ≡ B (M (θ)) [A (θ,M (θ))]
σ−1
σ [M ′ (θ)]

1
σ .

Note that, of course, this reduced-form production function is consistent with the wage schedule

derived above. We �nd that w (θ) = B (M (θ))A (θ,M (θ)) [ Y
Y (M(θ)) ]1/σ by combining (31) and (30).

Di�erentiating the reduced-form production function (38) with respect to l (θ) f (θ) and using (34)

leads to the same expression.

Equation (38) de�nes a production function over skills θ ∈ Θ (rather than tasks). Interestingly,

note that this production function inherits the CES structure of the original production function,

except that the technological coe�cients a (θ,M) are now endogenous to taxes, since they depend

on the matching function M . We can write (38) as a function F̃({l (θ) f (θ)}θ∈Θ ,M) ≡ F̃ (L ,M).

Now, using the result proved above that the functionM ≡M (· | L ) depends on taxes only through

the equilibrium labor supplies L , we �nally obtain the following reduced form production function:

Y = F (L ) . (39)
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Cross-wage elasticities. Using the reduced-form production function (39), all of the results we

have derived go through. We can still de�ne wages as: for all θ,

w (θ) ≡ ∂F (L )

∂[l (θ) f (θ)]
,

the cross-wage elasticities as: for all θ′ 6= θ,

γ (θ, θ′) ≡ ∂ lnw (θ)

∂ ln[l (θ′) f (θ′)]
,

and the own-wage elasticities 1/εDw (θ) as the jump, if there is one, in the cross-wage elasticities as

θ′ ≈ θ. These cross-wage elasticities are de�ned as the impact of an exogenous shock to the supply of

labor of type θ′ (e.g., an immigration in�ow) on the wage of type θ, keeping everyone's labor supply

constant otherwise (since they are de�ned as a partial derivative), but allowing for the endogenous

re-assignment of skills to tasks following this exogenous shock. Indeed, the reduced-form production

function F accounts for the dependence of the matching function on agents' labor supplies.

A.4 Special cases of production functions

A.4.1 CES technology

Wages, cross-wage elasticities and Euler theorem. The CES technology is de�ned by (4).

The wage schedule is then given by

w (θ) = a (θ) (L (θ))
− 1
σ

[ˆ
Θ

a (x) (L (x))
σ−1
σ dx

] 1
σ−1

.

The cross-wage and own-wage elasticities are given by

γ (θ, θ′) =
1

σ

a (θ′) (L (θ′))
σ−1
σ

´
Θ
a (x) (L (x))

σ−1
σ dx

and
1

εDw (θ)
=

1

σ
. (40)

This implies in particular, for all θ ∈ Θ,

ˆ
Θ

γ (θ, θ′) dθ′ =
1

σ
.

Since γ (θ, θ′) does not depend on θ, Euler's homogeneous function theorem (26) can be rewritten

as

− 1

σ
y′fY (y′) (y′ (θ′)) +

1

σ

a (θ′) (L (θ′))
σ−1
σ

´
Θ
a (x) (L (x))

σ−1
σ dx

ˆ
R+

yfY (y) dy = 0,

i.e.,

a (θ′) (L (θ′))
σ−1
σ

´
Θ
a (x) (L (x))

σ−1
σ dx

= (y′ (θ′))
y′fY (y′)´

R+
xfY (x) dx

.
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Substituting in expression (40) and changing variables, we thus obtain

γ (y, y′) =
1

σ

y′fY (y′)´
R+
xfY (x) dx

. (41)

Labor supply elasticities with a CRP tax schedule. Next, assume in addition that the

disutility of labor is isoelastic, i.e. v (l) = l1+1/e

1+1/e , and that the initial tax schedule is CRP, as de�ned

by (3). In particular, we have 1 − T ′ (y) = (1−m) y−p and T ′′ (y) = p (1−m) y−p−1. The labor

supply elasticities (8) and the equilibrium labor elasticities (introduced in Lemma 1) are then all

constant and given by

εSr (y) =
1− T ′ (y)

1− T ′ (y) + eyT ′′ (y)
e =

e

1 + pe
,

εSw (y) =
1− T ′ (y)− yT ′′ (y)

1− T ′ (y) + eyT ′′ (y)
e =

(1− p) e
1 + pe

,

εr (y) =
εSr (θ)

1 + εSw (θ) /εDw (θ)
=

e

1 + pe+ (1− p) eσ
,

εw (y) =
εSw (θ)

1 + εSw (θ) /εDw (θ)
=

(1− p) e
1 + pe+ (1− p) eσ

.

(42)

Su�cient conditions ensuring the convergence of the resolvent (11). Suppose that

the production function is CES with parameter σ, that the disutility of labor is isoelastic with

parameter e, and that the initial tax schedule is CRP with parameter p < 1. Corollary 1 implies

that the resolvent series converges if

1

σEy
E [yεw (y)] =

(1− p) e
1 + pe+ (1− p) eσ

< 1.

Since (1− p) e > 0, this condition is satis�ed if 1 + pe > 0. Recall that this condition is the second-

order condition of the individual problem, which we assume is satis�ed throughout the analysis. In

particular, in the calibration to the U.S. economy, we have p = 0.15 > 0 > − 1
e ≈ −3 so this clearly

holds.

A.4.2 Translog technology

The CES production function implies that, e.g., high-skill workers are equally substitutable with

middle-skill workers as they are with low-skill workers. We now propose a more �exible parametriza-

tion of the production function that allows the elasticities of substitution to be distance-dependent,

that is, closer skill types to be stronger substitutes (see Teulings (2005) and Section A.3).

De�nition. The transcendental-logarithmic (Translog) production function is de�ned by

ln F ({L (θ)}θ∈Θ) = a0 +

ˆ
Θ

a (θ) lnL (θ) dθ + . . .

1

2

ˆ
Θ

β (θ) (lnL (θ))
2
dθ +

1

2

ˆ
Θ×Θ

χ (θ, θ′) (lnL (θ)) (lnL (θ′)) dθdθ′,

(43)
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where for all θ, θ′,
´

Θ
a (θ′) dθ′ = 1, χ (θ, θ′) = χ (θ′, θ), and β (θ) = −

´
Θ
χ (θ, θ′) dθ′. It is easy to

check that these conditions ensure that the production function has constant returns to scale. When

χ (θ, θ′) = 0 for all θ, θ′, the production function is Cobb-Douglas. This speci�cation can be used as

a second-order local approximation to any production function (Christensen, Jorgenson, and Lau,

1973).

Wages and elasticities. The wage of type θ∗ is given by

w (θ∗) = lim
µ→0

1

µ
[F (L + µδ (θ − θ∗))−F (L )]

=
F (L )

L (θ∗)
{a (θ∗) + β (θ∗) lnL (θ∗) +

ˆ
Θ

χ (θ∗, θ′′) ln (L (θ′′)) dθ′′}.

The cross-wage and own-wage elasticities are then given by

γ (θ, θ′) =

(
w (θ′)L (θ′)

F (L )

)
+

(
w (θ)L (θ)

F (L )

)−1

χ (θ, θ′) and
1

εDw (θ)
= 1−

(
w (θ)L (θ)

F (L )

)−1

β (θ) .

Finally, we have

ln

(
w (θ)

w (θ′)

)
= ln

(
L (θ′)

L (θ)

)
+ ln

a (θ) +
´

Θ
χ (θ, θ′′) ln (L (θ′′) /L (θ)) dθ′′

a (θ′) +
´

Θ
χ (θ′, θ′′) ln (L (θ′′) /L (θ′)) dθ′′

,

so that the elasticities of substitution are given by

1

σ (θ, θ′)
=− ∂ ln (w (θ) /w (θ′))

∂ ln (L (θ) /L (θ′))
= 1 +

[(
w (θ)L (θ)

F (L )

)−1

+

(
w (θ′)L (θ′)

F (L )

)−1
]
χ (θ, θ′) .

De�ne the elasticities of substitution between two income levels as σ (y, y′) = −∂ ln(w(y)/w(y′))
∂ ln(L(y)/L(y′)) . For

y = y (θ), let a (y) ≡ a (θ), β (y) = β (θ), and χ (y, y′) =
(
dy(θ′)
dθ

)−1

χ (θ, θ′). We then have

1

σ (y, y′)
= 1 +

[(
w (y)L (y)

F (L )

)−1

+

(
w (y′)L (y′)

F (L )

)−1
]
dy (θ′)

dθ
χ (y, y′) .

This change of variables ensures that the (arbitrary) choice of the underlying set of types Θ does

not impact the elasticity of substitution between two agents. We propose a calibration of these

elasticities in Section F.1.4 below.

A.4.3 HSA technology and separable kernels

We �nally propose a class of production functions with variable elasticities of substitution for which

the incidence of tax reforms is as simple as for the CES production.
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Separable kernels: special case

Suppose that the kernel εw (θ) γ (θ, θ′) of the integral equation (9) is multiplicatively separable

between θ and θ′, i.e., the cross-wage elasticities have the following form: for all θ, θ′,

γ (θ, θ′) = γ1 (θ)× γ2 (θ′) . (44)

The kernel (44) can be interpreted as follows. First, there is a ��xed e�ect� γ2 (θ′) for skill θ′

that determines how much the labor e�ort of these agents a�ects the wages of other workers. E.g.,

high-skill workers may have a stronger impact on the wage distribution than low- or middle-skill

workers. Second, there is a �xed e�ect γ1 (θ) for skill θ that determines how sensitive the wage of

agents with skill θ is to the labor e�ort of other workers. E.g., the wage of middle-skill workers may

react more strongly to overall changes in labor e�ort. The total impact of the labor e�ort of skill θ′

on the wage of skill θ is the product of these two �xed e�ects.

A special case of (44) arises when the production function is CES, because then the cross-wage

elasticities γ (θ, θ′) do not depend on θ. Speci�cally, we have in this case

γ (θ, θ′) =
1

σ
a (θ′) (L (θ′) /F (L ))

σ−1
σ .

Thus, in particular, a one-percent increase in the labor e�ort of skill θ′ raises the wage of every

agent θ 6= θ′ by the same percentage amount. The CES functional form implies moreover that

the elasticities of subsitution between any two pairs of skills are constant, i.e. σ (θ, θ′) = σ. The

separability restriction (44), however, is consistent with a larger class of production functions with

variable elasticities of substitution, as we now show.

HSA production functions. We now study a class of production functions that generates a

multiplicatively separable kernel (44). The �homothetic demand systems with a single aggregator �

(HSA), de�ned in (5), has been introduced and analyzed by Matsuyama and Ushchev (2017). We

refer to their paper for the technical results and proofs. Proposition 1 in Matsuyama and Ushchev

(2017) provides necessary and su�cient restrictions on the functions s (·; θ) ensuring that there exists
a well-de�ned production function F generating the demand system (5). Their Proposition 1 shows

that the labor share mappings s (·; θ) can be treated as a primitive of the model.

Examples. The CES production function is a special case of the HSA class. In this case

we know the production function F (L ) = [
´

Θ
a (θ) (L (θ))

σ−1
σ dθ]

σ
σ−1 in closed-form, and it is

straightforward to verify that the property (5) holds for s (x; θ) = (a (θ))
σ
x1−σ and

A = [

ˆ
(a (θ))

σ
(w (θ))

1−σ
dθ]

1
1−σ .

Another example is the production function generated by a separable Translog cost function

(Christensen et al. (1973, 1975)). The Translog cost function is often used in empirical estimations

of production functions (see, e.g., Kim (1992)), and is a useful alternative to the Translog production
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function introduced in Section A.4.2. This cost function is de�ned by

ln C ({w (θ)}θ∈Θ ;Y ) = a0 + a1 lnY + a2 (lnY )
2

+

ˆ
Θ

a (θ) lnw (θ) dθ +

ˆ
Θ

aY (θ) lnw (θ) lnY dθ

+
1

2

ˆ
Θ

β (θ) (lnw (θ))
2
dθ +

1

2

ˆ
Θ×Θ

χ (θ, θ′) (lnw (θ)) (lnw (θ′)) dθdθ′,

where we assume that the coe�cients χ (θ, θ′) = ζ χ (θ)χ (θ′) are multiplicatively separable, with´
Θ
χ (θ) dθ = 1 and β (θ) = −

´
Θ
χ (θ, θ′) dθ′. Using Shephard's lemma, we obtain that the labor

share of skill θ is given by

w (θ)L (θ)

F
(
{L (θ)}θ∈Θ

) =a (θ) + aY (θ) lnY + β (θ) lnw (θ) + ζ

ˆ
Θ

χ (θ)χ (θ′) lnw (θ′) dθ′,

which can be easily shown to be of the form (5). This example shows in particular that it is not

necessary to know in closed-form the production function itself to verify that the wages and labor

inputs it implies are in the HSA class.

Matsuyama and Ushchev (2017) provide several other special cases of HSA production structures.

We refer to their paper (Examples 3b to 5) for further examples. Interestingly, note that the HSA

class of production functions is de�ned non-parametrically, which makes it particularly �exible.

Cross-wage elasticities. The cross-wage elasticities γ (θ, θ′) implied by HSA production func-

tions are multiplicatively separable (i.e., of the form (44)). Speci�cally, we show that the cross-wage

elasticities induced by an HSA production function are given by

γ (θ, θ′) =

1−
w(θ)
A(w)s

′
(
w(θ)
A(w) ; θ

)
s
(
w(θ)
A(w) ; θ

)
−1 [

w (θ′)L (θ′)

F (L )

]
. (45)

Proof of equation (45). To derive the cross-wage elasticities γ (θ, θ′), we di�erentiate the HSA

property (5) with respect to w (θ) and L (θ′), keeping the aggregator A({w (θ)}θ∈Θ) constant. We

obtain

w (θ)L (θ)

F ({L (θ)}θ∈Θ)

dw (θ)

w (θ)
− w (θ)L (θ)

F ({L (θ)}θ∈Θ)

L (θ′) F ′θ′({L (θ)}θ∈Θ)

F ({L (θ)}θ∈Θ)

dL (θ′)

L (θ′)

= s′
(

w (θ)

A({w (θ)}θ∈Θ)
; θ

)
w (θ)

A({w (θ)}θ∈Θ)

dw (θ)

w (θ)
.

Hence, using the relationship w(θ)L(θ)
F(L ) = s

(
w(θ)
A(w) ; θ

)
and rearranging terms, we obtain

1−
s′
(
w(θ)
A(w) ; θ

)
w(θ)
A(w)

s
(
w(θ)
A(w) ; θ

)
 dw (θ)

w (θ)
=

w (θ′)L (θ′)

F (L )

dL (θ′)

L (θ′)
.

This easily leads to (45).
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The �rst term in square brackets is a function of θ only and is determined by the elasticity of

the labor share function s (·, θ). This term is equal to 1 if the production function is CES. The

second term in square brackets depends on θ′ only and is given by the labor share of skill θ′. Note

that, except for the special CES case, the elasticities of substitution implied by the HSA production

functions are not constant.

Alternative (dual) formulation. Following Remark 3 in Matsuyama and Ushchev (2017),

we can de�ne alternatively another class of production functions by

w (θ)L (θ)

F
(
{L (θ)}θ∈Θ

) = s̃

(
L (θ)

B
(
{L (θ)}θ∈Θ

) ; θ

)
.

It is straightforward to show in particular that the Translog production function that we studied

in the paper (as opposed to the Translog cost function described above) with χ (θ, θ′) = χ (θ)χ (θ′)

satis�es this restriction. In this case, the cross-wage elasticities γ (θ, θ′) are not multiplicatively

separable as in (44), but the sum of two multiplicatively separable terms:

γ (θ, θ′) =
w (θ′)L (θ′)

F (L )
−

L(θ)
B(L ) s̃

′
(
L(θ)
B(L ) ; θ

)
s̃
(
L(θ)
B(L ) ; θ

) × L (θ′)B′θ′ (L )

B (L )
.

This kernel is the sum of two multiplicatively separable kernels. We now study the properties of this

general class of kernels.

Separable kernels: general case

Suppose more generally that the cross-wage elasticities are a sum of multiplicatively separable func-

tions:

γ (θ, θ′) =

n∑
k=1

γk1 (θ) γk2 (θ′) . (46)

In this case, we can show that there exists a matrix A = (Aij)1≤i,j≤n such that the resolvent of the

integral equation is equal to

Γ (θ, θ′) =
∑

1≤i,j≤n

Aij γ
i
1 (θ) γj2 (θ′) . (47)

Speci�cally, A is given by (see Section 4.9.20 in Polyanin and Manzhirov (2008)):

A = [Idn −B]
−1
,
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assuming this matrix exists, where B = (Bmp)1≤m,p≤n is the matrix de�ned by

Bmp =

ˆ
Θ

γm2 (s) γp1 (s) ds.

This result is useful, as the most important results of the theory of integral equations (the

Fredholm theorems, which lead in particular to our Proposition 1), are derived (when the convergence

conditions stated in our Proposition do not necessarily hold) by showing that a general kernel can be

approximated arbitrarily closely by such separable kernels. This construction is described formally

in Section 2.4 of Zemyan (2012). Speci�cally, by the Weierstrass approximation theorem, we can

approximate the kernel γ (θ, θ′) by the separable polynomial in θ and θ′ of the form (46).

Theorem of uniform approximation. Moreover, the Theorem of Uniform Approximation (see,

e.g., Section 2.6.1 in Zemyan (2012)) shows that if the kernels of two Fredholm integral equations

are close, then their solutions are close as well � that is, the solution to an integral equation is

continuous in its kernel. Formally, suppose that for some constants δ1, δ2 > 0, we have

max
0≤θ≤θ̄

|g (θ)− ḡ (θ)| < δ1

max
0≤θ,θ′≤θ̄

|γ (θ, θ′)− γ̄ (θ, θ′)| < δ2.

Suppose moreover that the resolvent series Γ (θ, θ′) and Γ̄ (θ, θ′) of the Fredholm integral equations

f (θ) = g (θ) +

ˆ
Θ

γ (θ, θ′) f (θ′) dθ′

f̄ (θ) = ḡ (θ) +

ˆ
Θ

γ̄ (θ, θ′) f̄ (θ′) dθ′

converge. Then there exist constants β1, β2 such that

max
0≤θ≤θ̄

∣∣f (θ)− f̄ (θ)
∣∣ ≤ β1δ1 + β2δ2.

Combined with the previous result that any kernel can be approximated arbitrarily closely by a

separable kernel, we obtain that the solution to the integral equation can be approximated arbitrarily

closely by the corresponding resolvent (47).

A.4.4 Relationship with Scheuer and Werning (2016) and Scheuer and

Werning (2017)

Scheuer and Werning (2016, 2017) analyze a general equilibrium extension of Mirrlees (1971) and

prove a neutrality result: in their model, the optimal tax formula is the same as in partial equilibrium,

even though they consider a more general production function than Mirrlees (1971).42 The key

42The policy implications can nevertheless be di�erent. For instance, in Scheuer and Werning
(2017), the relevant earnings elasticity in the formula written in terms of the observed income
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modeling di�erence between our framework and theirs is the following. In theirs, all the agents

produce the same input with di�erent productivities θ. Denoting by λ (θ) = θl (θ) the agent's

production of that input (i.e., her e�ciency units of labor), the aggregate production function then

maps the distribution of λ into output. In equilibrium, a nonlinear price (earnings) schedule p (·)
emerges such that an agent who produces λ units earns income p (λ), irrespective of her underlying

productivity θ. Hence, when an (atomistic) individual θ provides more e�ort l (θ), her income moves

along the non-linear schedule l 7→ p (θ × l); e.g., in their superstars model with a convex equilibrium

earnings schedule, her income increases faster than linearly. By contrast, in our framework, di�erent

values of θ index di�erent inputs in the aggregate production function; for each of these inputs, there

is one speci�c price (wage) w (θ), and hence a linear earnings schedule l 7→ w (θ)× l. Therefore, when
an individual θ provides more e�ort l (θ), her income increases linearly, as her wage remains constant

(since her sector θ doesn't change). In their framework, Scheuer and Werning (2017, 2016) show that

the general equilibrium e�ects exactly cancel out at the optimum tax schedule, even though they

would of course be non-zero in the characterization of the incidence e�ects of tax reforms around a

suboptimal tax code. In our framework, as in those of Stiglitz (1982); Rothschild and Scheuer (2014);

Ales, Kurnaz, and Sleet (2015), these general equilibrium forces are also present at the optimum.

B Proofs of Section 2

B.1 Incidence of tax reforms on labor supply

B.1.1 Variational approach: derivation of the integral equation

Proof of Lemma 1. Denote the perturbed tax function by T̃ (y) = T (y) + µT̂ (y). Denote by

l̂ (θ) the Gateaux derivative of the labor supply of type θ in response to this perturbation, and let

L̂ (θ) = l̂ (θ) f (θ). The labor supply response of type θ is given by the solution to the perturbed

�rst-order condition

0 =v′
(
l (θ) + µl̂ (θ)

)
−
{

1− T ′
[
w̃ (θ)×

(
l (θ) + µl̂ (θ)

)]
− µT̂ ′

[
w̃ (θ)×

(
l (θ) + µl̂ (θ)

)]}
w̃ (θ) , (48)

where w̃ (θ) is the perturbed wage schedule, which satis�e

w̃ (θ)− w (θ)

µ
=

1

µ

{
F ′θ({(l (θ′) + µl̂ (θ′))f (θ′)}θ′∈Θ)−F ′θ({l (θ′) f (θ′)}θ′∈Θ)

}
=
µ→0

F ′θ

ˆ
Θ

L (θ′) F ′′θ,θ′

F ′θ

l̂ (θ′)

l (θ′)
dθ′

= w (θ)

[
− 1

εDw (θ)

l̂ (θ)

l (θ)
+

ˆ
Θ

γ (θ, θ′)
l̂ (θ′)

l (θ′)
dθ′

]
. (49)

distribution is higher due to the superstar e�ects.
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Taking a �rst-order Taylor expansion of the perturbed �rst-order conditions (48) around the baseline

allocation, using (49) to substitute for w̃ (θ)− w (θ), and solving for l̂ (θ) yields1 +
1− T ′ (y (θ))− y (θ)T ′′ (y (θ))

1− T ′ (y (θ)) + v′(l(θ))
l(θ)v′′(l(θ))y (θ)T ′′ (y (θ))

v′ (l (θ))

l (θ) v′′ (l (θ))

1

εDw (θ)

 l̂ (θ)

l (θ)

=
1− T ′ (y (θ))− y (θ)T ′′ (y (θ))

1− T ′ (y (θ)) + v′(l(θ))
l(θ)v′′(l(θ))y (θ)T ′′ (y (θ))

v′ (l (θ))

l (θ) v′′ (l (θ))

ˆ
Θ

γ (θ, θ′)
l̂ (θ′)

l (θ′)
dθ′

− 1

1− T ′ (y (θ)) + v′(l(θ))
l(θ)v′′(l(θ))y (θ)T ′′ (y (θ))

v′ (l (θ))

l (θ) v′′ (l (θ))
T̂ ′ (y (θ)) ,

which leads to equation (9).

B.1.2 Solution to the integral equation

Proof of Proposition 1. Assume that the condition
´

Θ2 |εw (θ) γ (θ, θ′)|2 dθdθ′ < 1 holds. Sub-

stituting for dl (θ′) in the integral of equation (9), using the r.h.s. of the integral equation (9),

yield

l̂ (θ)

l (θ)
=− εr (θ)

T̂ ′ (y (θ))

1− T ′ (y (θ))
−
ˆ

Θ

εw (θ) γ (θ, θ′) εr (θ′)
T̂ ′ (y (θ′))

1− T ′ (y (θ′))
dθ′

+

ˆ
Θ

{ˆ
Θ

εw (θ) γ (θ, θ′) εw (θ′) γ (θ′, θ′′)
l̂ (θ′′)

l (θ)
dθ′′

}
dθ′.

Applying Fubini's theorem yields

l̂ (θ)

l (θ)
=− εr (θ)

T̂ ′ (y (θ))

1− T ′ (y (θ))

−
ˆ

Θ

εw (θ) γ (θ, θ′) εr (θ′)
T̂ ′ (y (θ′))

1− T ′ (y (θ′))
dθ′ +

ˆ
Θ

εw (θ) Γ2 (θ, θ′)
l̂ (θ′)

l (θ)
dθ′,

where Γ2 (θ, θ′) =
´

Θ
γ (θ, θ′′) εw (θ′′) γ (θ′′, θ′) dθ′′. Following analogous steps, repeated substitutions

lead to: for all n ≥ 1,

l̂ (θ)

l (θ)
=− εr (θ)

T̂ ′ (y (θ))

1− T ′ (y (θ))
−

n∑
i=1

ˆ
Θ

εw (θ) Γi (θ, θ′) εr (θ′)
T̂ ′ (y (θ′))

1− T ′ (y (θ′))
dθ′

+

ˆ
Θ

εw (θ) Γn+1 (θ, θ′)
l̂ (θ′)

l (θ)
dθ′,

where, for all i ≥ 3, Γi (θ, θ′) =
´

Θ
Γi−1 (θ, θ′′) εw (θ′′) γ (θ′′, θ′) dθ′′. We now show that

ˆ
Θ

Γn+1 (θ, θ′)
l̂ (θ′)

l (θ)
dθ′
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converges to zero as n→∞. Applying the Cauchy-Schwartz inequality to the iterated kernel yields

|Γn+1 (θ, θ′)|2 ≤
(ˆ

Θ

|Γn (θ, θ′′)|2 dθ′′
)(ˆ

Θ

|εw (θ′′) γ (θ′′, θ′)|2 dθ′′
)
.

Integrating this inequality with respect to θ′ implies

ˆ
Θ

|Γn+1 (θ, θ′)|2 dθ′ ≤
(ˆ

Θ

|Γn (θ, θ′′)|2 dθ′′
)(ˆ

Θ

ˆ
Θ

|εw (θ′′) γ (θ′′, θ′)|2 dθ′′dθ′
)

= ‖εwγ‖22 ×
ˆ

Θ

|Γn (θ, θ′′)|2 dθ′′.

By induction, we obtain

ˆ
Θ

|Γn+1 (θ, θ′)|2 dθ′ ≤‖εwγ‖2n2 ×
ˆ

Θ

|Γ1 (θ, θ′′)|2 dθ′′.

We thus have, using the Cauchy-Schwartz inequality again,∣∣∣∣∣
ˆ

Θ

Γn+1 (θ, θ′) εr (θ′)
T̂ ′ (y (θ′))

1− T ′ (y (θ′))
dθ′

∣∣∣∣∣
2

≤
(ˆ

Θ

|Γn+1 (θ, θ′′)|2 dθ′′
)ˆ

Θ

∣∣∣∣∣εr (θ′)
T̂ ′ (y (θ′))

1− T ′ (y (θ′))

∣∣∣∣∣
2

dθ′′


≤‖εwγ‖2n2 ×

(ˆ
Θ

|γ (θ, θ′′)|2 dθ′′
)
×

∥∥∥∥∥εr T̂ ′

1− T ′

∥∥∥∥∥
2

2

Thus, for all θ ∈ Θ, for all i ≥ 1,∣∣∣∣∣
ˆ

Θ

Γi (θ, θ′) εr (θ′)
T̂ ′ (y (θ′))

1− T ′ (y (θ′))
dθ′

∣∣∣∣∣ ≤
[∥∥∥∥∥εr T̂ ′

1− T ′

∥∥∥∥∥
2

√ˆ
Θ

|γ (θ, θ′′)|2 dθ′′
]
× ‖εwγ‖i2 .

Since ‖εwγ‖2 < 1, the previous arguments imply that the sequence {κn (θ)}n≥1 de�ned by

κn (θ) ≡
ˆ

Θ

n∑
i=1

Γi (θ, θ′) εr (θ′)
T̂ ′ (y (θ′))

1− T ′ (y (θ′))
dθ′

is dominated by a convergent geometric series of positive terms, and therefore it converges absolutely

and uniformly to a unique limit κ (θ) on Θ. Similarly, we have

lim
n→∞

∣∣∣∣∣
ˆ

Θ

Γn+1 (θ, θ′)
l̂ (θ′)

l (θ′)
dθ′

∣∣∣∣∣ = 0.

Therefore, we can write

l̂ (θ)

l (θ)
=− εr (θ)

T̂ ′ (y (θ))

1− T ′ (y (θ))
− εw (θ)

ˆ
Θ

∞∑
i=1

Γi (θ, θ′) εr (θ′)
T̂ ′ (y (θ′))

1− T ′ (y (θ′))
dθ′,
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which proves equation (10). To show the uniqueness of the solution, suppose that l̂1 (θ) and l̂2 (θ)

are two solutions to (10). Then ∆l̂ (θ) ≡ l̂2 (θ)− l̂1 (θ) satis�es the homogeneous integral equation

∆
l̂ (θ)

l (θ)
=

ˆ
Θ

εw (θ) γ (θ, θ′) ∆
l̂ (θ′)

l (θ′)
dθ′.

The Cauchy-Schwartz inequality implies∣∣∣∣∣∆ l̂ (θ)

l (θ)

∣∣∣∣∣
2

≤
(ˆ

Θ

|εw (θ) γ (θ, θ′)|2 dθ′
)ˆ

Θ

∣∣∣∣∣∆ l̂ (θ′)

l (θ′)

∣∣∣∣∣
2

dθ′

 .

Integrating with respect to θ yields

ˆ
Θ

∣∣∣∣∣∆ l̂ (θ)

l (θ)

∣∣∣∣∣
2

dθ ≤‖εwγ‖22
ˆ

Θ

∣∣∣∣∣∆ l̂ (θ′)

l (θ′)

∣∣∣∣∣
2

dθ′,

Assumption ‖εwγ‖2 < 1 then implies
´

Θ

∣∣∣∆ l̂(θ)
l(θ)

∣∣∣2 dθ = 0, i.e., ∆ l̂(θ)
l(θ) = 0 for all θ ∈ Θ.

B.1.3 Inverting the integral equation

We now show how to back out the structural elasticity parameters γ (θ, θ′) from the knowledge of

the resolvent elasticities Γ (θ, θ′). It is straightforward to show that

γ (θ, θ′) = Γ (θ, θ′)−
ˆ

Θ

Γ (θ, θ′′) εw (θ′′) γ (θ′′, θ′) dθ′′ .

Now �x θ′ and denote β (θ) = γ (θ, θ′) and ζ (θ, θ′′) = Γ (θ, θ′′) εw (θ′′). The previous equation can

be rewritten, for a �xed θ′, as:

β (θ) = Γ (θ, θ′)−
ˆ

Θ

ζ (θ, θ′′)β (θ′′) dθ′′

This is an integral equation with solution β (θ), which can be solved using the standard techniques.

B.1.4 Resolvent in the case of a CES production

Proof of equation (13).
Derivation of the resolvent. Suppose that the cross-wage elasticities are multiplicatively

separable, i.e., of the form γ (θ′, θ) = γ1 (θ′) γ2 (θ). The integral equation (9) then reads

l̂ (θ) =− εr (θ)
T̂ ′ (y (θ))

1− T ′ (y (θ))
+ εw (θ) γ1 (θ)

ˆ
Θ

γ2 (θ′) l̂ (θ′) dθ′

and can be easily solved as follows. Multiplying by γ2 (θ′) both sides of the integral equation

63



evaluated at θ′ and integrating with respect to θ′ leads to

ˆ
Θ

γ2 (θ′) l̂ (θ′) dθ′ =−
ˆ

Θ

γ2 (θ′) εr (θ′)
T̂ ′ (y (θ′))

1− T ′ (y (θ′))
dθ′

+

(ˆ
Θ

εw (θ′) γ1 (θ′) γ2 (θ′) dθ′
)(ˆ

Θ

γ2 (θ′) l̂ (θ′) dθ′
)
,

i.e.,
ˆ

Θ

γ2 (θ′) l̂ (θ′) dθ′ =−

´
Θ
γ2 (θ′) εr (θ′)

T̂ ′(y(θ′))
1−T ′(y(θ′))dθ

′

1−
´

Θ
εw (θ′) γ1 (θ′) γ2 (θ′) dθ′

.

Substituting into the right hand side of the integral equation (9) leads to

l̂ (θ) =− εr (θ)
T̂ ′ (y (θ))

1− T ′ (y (θ))
− εw (θ)

ˆ
Θ

γ1 (θ) γ2 (θ′)

1−
´

Θ
εw (θ′) γ1 (θ′) γ2 (θ′) dθ′

εr (θ′)
T̂ ′ (y (θ′))

1− T ′ (y (θ′))
dθ′.

Next, suppose in particular that the production function is CES, so that γ1 (θ) ≡ 1. We saw in

equation (27) that we then have

γ2 (θ′) =
1

σ

y (θ′) fY (y (θ′))´
xfY (x) dx

[
dy

dθ
(θ′)

]
.

Changing variables from types θ′ to incomes y′ ≡ y (θ′) in the integral
´

Θ
εw (θ′) γ2 (θ′) dθ′ in the

denominator of the previous equation, we can rewrite this integral as

1

σ

ˆ
R+

εw (y′)
y′fY (y′)´
xfY (x) dx

dy′.

This concludes the proof.

Su�cient conditions ensuring convergence of the resolvent. Note that the solution to

the integral equation in the CES case is well de�ned if 1− 1
σ

´
R+
εw (y′)

y′fY (y′)´
xfY (x)dx

dy′ > 0. Suppose

that the the initial tax schedule is CRP with parameter p, and that the disutility of labor is isoelastic

with parameter e. In this case, we saw that εw (y′) = (1−p)e
1+pe+(1−p) eσ

is constant. Therefore we obtain

1− 1

σ

ˆ
R+

εw (y′)
y′fY (y′)´
xfY (x) dx

dy′ = 1− εw
σ

=
1 + pe

1 + pe+ (1− p) eσ
> 0.

Therefore the convergence of the resolvent is always ensured in this case.

B.2 Incidence of tax reforms on wages and utilities

Proof of Corollary 2.
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Equation (14). By equation (49), the Gateaux derivative of the wage functional is given by

ŵ (θ)

w (θ)
= − 1

εDw (θ)

l̂ (θ)

l (θ)
+

ˆ
Θ

γ (θ, θ′)
l̂ (θ′)

l (θ′)
dθ′.

Substituting in the integral equation (9) implies

l̂ (θ)

l (θ)
=− εr (θ)

T̂ ′ (y (θ))

1− T ′ (y (θ))
+ εw (θ)

[
ŵ (θ)

w (θ)
+

1

εDw (θ)

l̂ (θ)

l (θ)

]
,

which leads to formula (14) by noting that
1−εw(θ)/εDw (θ)

εw(θ) = 1
εSw(θ)

and that εr(θ)
εw(θ) =

εSr (θ)
εSw(θ)

.

Equation (15). The �rst-order e�ects of a tax reform T̂ on individual welfare are given by

Û (θ) = (1− T ′ (y (θ))) y (θ)

(
ŵ (θ)

w (θ)
+
l̂ (θ)

l (θ)

)
− l (θ) v′ (l (θ)) l̂ (θ)

l (θ)
− T̂ (y (θ))

= (1− T ′ (y (θ))) y (θ)
ŵ (θ)

w (θ)
− T̂ (y (θ)) ,

where the last equality uses the �rst order condition (1). We obtain formula (15).

Corollary 6. Suppose that the cross-wage elasticities satisfy γ (θ, θ′) ≥ 0 for all θ, θ′. Then,

given a total (average) tax change T̂ (y (θ)) at income y (θ), a higher marginal tax rate T̂ ′ (y (θ)) > 0

raises the utility of agents with type θ and lowers that of all other agents. That is, Û (θ) > 0, and

Û (θ′) < 0 for all θ′ 6= θ.

Proof of Corollary 6. Suppose that γ (θ′, θ) > 0 for all θ, θ′, which implies that Γ (θ′, θ) > 0 for

all θ, θ′. We then have, using equations (10) and (14), for any θ′ ∈ Θ

ŵ (θ)

w (θ)
=
εr (θ′)

εDw (θ′)

T̂ ′ (y (θ′))

1− T ′ (y (θ′))
− εw (θ′)

εSw (θ′)

ˆ
Θ

Γ (θ′, θ) εr (θ)
T̂ ′ (y (θ))

1− T ′ (y (θ))
dθ.

Since
εw(θ′)
εSw(θ′)

Γ (θ′, θ) εr (θ) > 0, a higher marginal tax rate T̂ ′ (y (θ)) > 0 at income y (θ) lowers the

wage, and hence lowers the utility (conditional on the total tax change T̂ (y (θ′)) at income y (θ′)),

of type θ′ 6= θ. This is because the higher tax rate lowers the labor supply of type θ and the

labor of type θ′ is complementary to that of type θ in production. Moreover, since
εr(θ′)
εDw (θ′)

> 0, a

higher marginal tax rate T̂ ′ (y (θ′)) > 0 at income y (θ′) raises the wage, and hence raises the utility

(conditional on the total tax change T̂ (y (θ′)) at income y (θ′)), of type θ′. The easiest way to show

this is to consider an elemtary tax reform at income y (θ′), as de�ned in Section 3.1. We then have

ŵ (θ)

w (θ)
=

εr (θ′)

εDw (θ′)
δ (0)− εw (θ′)

εSw (θ′)
Γ (θ′, θ′)

εr (θ′)

1− T ′ (y (θ′))
,

which is positive. Note that an increase in the marginal tax rate at income y (θ) implies that

individuals with skill θ′ > θ are made worse o� for two separate reasons: (i) their total tax bill is
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now mechanically higher, since the marginal tax rate on income y (θ) has increased; (ii) their wage

is lower, since the labor supply of agents θ is distorted downward.

C Proofs of Section 3

C.1 Preliminaries

Proof of Section 3.1.
Equation (16). The �rst-order e�ects of a tax reform T̂ on individual θ's tax payment are

given by:

dT (w (θ) l (θ)) =T̂ (y (θ)) +

[
ŵ (θ)

w (θ)
+
l̂ (θ)

l (θ)

]
w (θ) l (θ)T ′ (y (θ))

so that the �rst-order e�ects of the tax reform T̂ on government revenue are given by (changing

variables from types θ to incomes y ≡ y (θ))

R̂ =

ˆ
T̂ (y) fY (y) dy +

ˆ
T ′ (y)

[
εSr (y)

εSw (y)

T̂ ′ (y)

1− T ′ (y)
+

(
1 +

1

εSw (y)

)
l̂ (y)

l (y)

]
yfY (y) dy, (50)

where l̂ (y) is the change in labor supply of agents with income initially equal to y. Moreover we

have

Ĝ ≡ d
ˆ
G [U (θ)]

λ
f (θ) dθ =

ˆ
(1− T ′ (y)) y

ŵ (y)

w (y)
g (y) fY (y) dy −

ˆ
T̂ (y) g (y) fY (y) dy,

where g (y) = G′(U(θ))
λ denotes the marginal social welfare weight at income y, and where ŵ (y) is

the change in labor supply of agents with income initially equal to y. The �rst-order e�ects of the

tax reform T̂ on social welfare are then given by

Ŵ = R̂+ Ĝ =

ˆ
(1− g (y)) T̂ (y) fY (y) dy −

ˆ
T ′ (y)

1− T ′ (y)
εSr (y) T̂ ′ (y) yfY (y) dy

+

ˆ [(
1 + εSw (y)

)
T ′ (y) + (1− T ′ (y)) g (y)

] ŵ (y)

w (y)
yfY (y) dy.

(51)

where we used equation (14).

Elementary tax reforms. Suppose that the tax reform T is the step function T (y) = I{y≥y∗},
so that T ′ (y) = δ (y − y∗) is the Dirac delta function (hence marginal tax rates are perturbed at

income y∗ only). To apply formula (10) to this non-di�erentiable perturbation, construct a sequence

of smooth funtions ϕy∗,ε (y) such that

δ (y − y∗) = lim
ε→0

ϕy∗,ε (y) ,
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in the sense that for all continuous functions ψ with compact support,

lim
ε→0

ˆ
R
ϕy∗,ε (y)ψ (y) dy = ψ (y∗) ,

i.e., changing variables in the integral,

lim
ε→0

ˆ
Θ

ϕy∗,ε (y (θ′))

{
ψ (y (θ′))

dy (θ′)

dθ

}
dθ′ = ψ (y∗) .

This can be obtained by de�ning an absolutely integrable and smooth function ϕy∗ (y) with compact

support and
´
R ϕy∗ (y) dy = 1, and letting ϕy∗,ε (y) = ε−1ϕy∗(

y
ε ). Letting Φy∗,ε be such that

Φ′y∗,ε = ϕy∗,ε, we then have, for all ε > 0, the following labor supply incidence formula:

l̂(θ,Φy∗,ε) =− εr (θ)
ϕy∗,ε (y (θ))

1− T ′ (y (θ))
− εw (θ)

ˆ
Θ

Γ (θ, θ′) εr (θ′)
ϕy∗,ε (y (θ′))

1− T ′ (y (θ′))
dθ′.

Letting ε→ 0, we obtain the incidence of the elementary tax reform at y∗:

l̂ (θ) =− εr (θ)
δy∗ (y (θ))

1− T ′ (y (θ))
− εw (θ)

Γ (θ, θ∗)

y′ (θ∗)
εr (θ∗)

1

1− T ′ (y (θ∗))

=− εr (y)
δy∗ (y)

1− T ′ (y)
− εw (y) Γ (y, y∗) εr (y∗)

1

1− T ′ (y∗)
,

(52)

where in the last equality we let y = y (θ) and y∗ = y (θ∗), and we use the change of variables

Γ (y, y∗) = Γ(θ,θ∗)
y′(θ∗) .

C.2 Aggregate tax incidence: general case

Proof of Proposition 2 and Corollary 3.
Incidence on government revenue. Applying formula (10) to express the incidence on

labor supply of the elementary tax reform at income y∗, formula (50) implies that the incidence on

government revenue is given by

R̂ (y∗) = 1 +
T ′ (y∗)

1− T ′ (y∗)
εSr (y∗)

εSw (y∗)

y∗fY (y∗)

1− FY (y∗)
+

ˆ
R+

T ′ (y)

(
1 +

1

εSw (y)

)
. . .

×
[
−εr (y)

δ (y − y∗)
1− T ′ (y)

− 1

1− T ′ (y∗)
εw (y) Γ (y, y∗) εr (y∗)

]
yfY (y)

1− FY (y∗)
dy

= R̂ex (y∗) +
T ′ (y∗)

1− T ′ (y∗)
εr (y∗)

y∗fY (y∗)

1− FY (y∗)

(
1 + εSw (y∗)

) 1

εDw (y∗)

− εr (y∗)

1− T ′ (y∗)

ˆ
R+

T ′ (y)
(
1 + εSw (y)

) Γ (y, y∗)

1 + εSw (y) /εDw (y)

yfY (y)

1− FY (y∗)
dy. (53)

Using Euler's theorem (25) easily leads to equation (18).

Linear initial tax schedule. Suppose in particular that the disutility of labor is constant and
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the initial tax schedule is linear, so that the marginal tax rate T ′ (y) and the elasticity εSw (y) are

constant. Applying equation (18) immediately implies that R̂ (y∗) = R̂ex (y∗).

C.3 Aggregate tax incidence with constant elasticities

Proof of Corollary 4.
Proof of formula ( 19). Suppose that the disutility of labor is isoelastic, the initial tax

schedule is CRP, and the labor demand elasticities are constant. We have shown above (equation

(53)) that

R̂ (y∗) = R̂ex (y∗) +
εr
(
1 + εSw

)
1− T ′ (y∗)

y∗fY (y∗)

1− FY (y∗)

1

εDw
T ′ (y∗)

−
εr
(
1 + εSw

)
1− T ′ (y∗)

y∗fY (y∗)

1− FY (y∗)

1

1 +
εSw
εDw

E
[
T ′ (y)

yΓ (y, y∗)

y∗fY (y∗)

]
.

The expectation in the second line can be rewritten as

E
[
T ′ (y)

yΓ (y, y∗)

y∗fY (y∗)

]
= Cov

(
T ′ (y) ;

yΓ (y, y∗)

y∗fY (y∗)

)
+

1

y∗fY (y∗)
E [T ′ (y)]E [yΓ (y, y∗)] .

But by Euler's theorem (equation (25)), we have

1

1 +
εSw
εDw

E [yΓ (y, y∗)] =
1

εDw (y∗)
y∗fY (y∗).

Substituting into the previous expression easily leads to (19).

Proof of formula ( 20). Suppose that the production function is CES with parameter σ,

so that Γ (y, y∗) is given by formula (13) with γ (y, y∗) = 1
σEyy

∗fY (y∗). Suppose moreover that

the initial tax schedule is CRP. Equations (42) then show that the elasticities εr (y) and εw (y) are

constant (independent of y). Consider the elementary tax reform at income y∗, i.e. T̂ (y) = I{y≥y∗}
and T̂ ′ (y) = δ (y − y∗). Expression (50) implies

R̂ (y∗) =1 +

ˆ
T ′ (y)

1− T ′ (y)

[
εSr
εSw
−
(

1 +
1

εSw

)
εr

]
yfY (y)

1− FY (y∗)
δ (y − y∗) dy

−
ˆ

T ′ (y)

1− T ′ (y∗)

(
1 +

1

εSw

)
εrεw

1− εw
σ

γ (y, y∗)
yfY (y)

1− FY (y∗)
dy

=R̂ex (y∗) + εr
(
1 + εSw

) [ T ′ (y∗)

1− T ′ (y∗)
1

σ

y∗fY (y∗)

1− FY (y∗)
−
ˆ
R+

T ′ (y)

1− T ′ (y∗)
γ (y, y∗)

ydFY (y)

1− FY (y∗)

]
.

Suppose �rst that p = 0, i.e., the initial tax schedule is linear. In this case, we have T ′ (y∗) = T ′ (y)

for all y, so that the term in the square brackets is equal to 0 by Euler's homogeneous function

theorem. More generally, with a nonlinear tax schedule, we can use expression (41) for γ (y, y∗) to
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rewrite the term in square brackets as

1

1− T ′ (y∗)
1

σ

y∗fY (y∗)

1− FY (y∗)

[
T ′ (y∗)−

ˆ
R+

T ′ (y)
y

Ey
fY (y) dy

]
.

Using the fact that
(
1 + εSw

)
εr
σ =

1+εSw
σ+εSw

εSr leads to equation (20). Note that we could also have

derived this result from equation (19): we have

Γ (y, y∗) =
γ (y, y∗)

1− εw
σ

=

1
σEyy

∗fY (y∗)

1− 1
σ

εSw
1+εSw/σ

=
1

σEy

(
1 +

εSw
σ

)
y∗fY (y∗) .

Substituting for Γ (y, y∗) into the covariance Cov (T ′ (y) ; yΓ (y, y∗)) and using 1
EyCov (T ′ (y) ; y) =

1
EyE [yT ′ (y)]− E [T ′ (y)] easily leads to (20).

Finally, for completeness, we characterize the e�ects of elementary tax reforms on social welfare.

Incidence on social welfare. The �rst-order e�ects of the reform on social welfare are given by

Ĝ (y∗) =−
ˆ ∞
y∗

g (y)
fY (y)

1− FY (y∗)
dy +

ˆ
g (y)

[
εSr
εSw
− 1− T ′ (y)

1− T ′ (y∗)
εr
εSw

]
yfY (y)

1− FY (y∗)
δ (y − y∗) dy

−
ˆ
g (y)

1− T ′ (y)

1− T ′ (y∗)
εr

1− εw
σ

εw
εSw
γ (y, y∗)

yfY (y)

1− FY (y∗)
dy.

=−
ˆ ∞
y∗

g (y)
fY (y)

1− FY (y∗)
dy +

1

1− T ′ (y∗)
εr
σ

[
g (y∗) (1− T ′ (y∗))

−
ˆ
R+

g (y) (1− T ′ (y))
y

Ey
fY (y) dy

] y∗fY (y∗)

1− FY (y∗)
,

where the second equality uses the expression (41) for γ (y, y∗). We thus obtain the incidence of the

elementary tax reform on social welfare Ŵ = R̂+ Ĝ as

Ŵ (y∗) =

ˆ ∞
y∗

(1− g (y))
fY (y)

1− FY (y∗)
dy − εSr

T ′ (y∗)

1− T ′ (y∗)
y∗fY (y∗)

1− FY (y∗)

+
εr/σ

1− T ′ (y∗)

[
ψ (y∗)−

ˆ
R+

ψ (y)
y

Ey
fY (y) dy

]
y∗fY (y∗)

1− FY (y∗)
,

(54)

where ψ (y) is de�ned by

ψ (y) =
(
1 + εSw (y)

)
T ′ (y) + g (y) (1− T ′ (y)) . (55)

Thus, the variable T ′ (y)
(
1 + εSw (y)

)
in equation (18), which measures the total impact of a wage

adjustment ŵ (y) on the government budget, is now replaced by the more general expression ψ (y).

Its second term comes from the fact that the share 1 − T ′ (y) of the income gain due to the wage

adjustment ŵ (y) is kept by the individual; this in turn raises social welfare in proportion to the

welfare weight g (y).
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D Generalizations of the baseline model

D.1 Income e�ects

D.1.1 Elasticity concepts

In this section we extend the model of Section 1 to a general utility function over consumption

and labor supply U (c, l), where Uc, Ucc > 0 and Ul, Ull < 0. This speci�cation allows for ar-

bitrary substitution and income e�ects. The utility of agent θ has the general form U (θ) ≡
u [w (θ) l (θ)− T (w (θ) l (θ)) , l (θ)]. The �rst-order condition of the agent writes

[1− T ′ (w (θ) l (θ))]w (θ)uc (θ) + ul (θ) = 0.

Di�erentiating this equation allows us to de�ne the compensated (Hicksian) elasticity of labor supply

with respect to the retention rate εSr (θ) and the income e�ect εSR (θ) as follows (see, e.g., p. 208 in

Saez (2001)):

ecr (θ) ≡ ∂ ln l (θ)

∂ ln r (θ)

∣∣∣∣
u cst

=
Ul (θ) /l (θ)

Ull (θ) +
(
Ul(θ)
Uc(θ)

)2

Ucc (θ)− 2
(
Ul(θ)
Uc(θ)

)
Ucl (θ)

, (56)

and

eR (θ) ≡ r (θ)w (θ)
∂l (θ)

∂R
=

−
(
Ul(θ)
Uc(θ)

)2

Ucc (θ) +
(
Ul(θ)
Uc(θ)

)
Ucl (θ)

Ull (θ) +
(
Ul(θ)
Uc(θ)

)2

Ucc (θ)− 2
(
Ul(θ)
Uc(θ)

)
Ucl (θ)

. (57)

We de�ne moreover the elasticities along the nonlinear budget constraint as

εc,Sr (θ) =
ecr (θ)

1 + p (y (θ)) ecr (θ)
,

εSR (θ) =
eR (θ)

1 + p (y (θ)) ecr (θ)
,

εSw (θ) =
(1− p (y (θ))) ecr (θ) + eR (θ)

1 + p (y (θ)) ecr (θ)
,

We also de�ne the elasticities of equilibrium labor as

εcr (θ) =
εc,Sr

1 + εSw (θ) /εDw (θ)
,

εR (θ) =
εSR (θ)

1 + εSw (θ) /εDw (θ)
,

εw (θ) =
εSw (θ)

1 + εSw (θ) /εDw (θ)
,
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where the structural cross-wage elasticity γ (θ, θ′) and the own-wage elasticity 1/εDw (θ) are de�ned

as in (6) and (7). Finally, the resolvent cross-wage elasticity Γ (θ, θ′) is de�ned by Γ (θ, θ′) ≡∑∞
n=1 Γn (θ, θ′) with Γ1 (θ, θ′) = γ (θ, θ′) and for all n ≥ 2,

Γn (θ, θ′) =

ˆ
Θ

Γn−1 (θ, θ′′) εw (θ′′) γ (θ′′, θ′) dθ′′,

where in this expression εw (θ′′) is given by the previous equation (rather than by its expression in

the quasilinear environment).

D.1.2 Tax incidence formula

With general preferences, the incidence of an arbitrary tax reform T̂ on individual labor supply is

given by the following formula, which generalizes (10):

l̂ (θ) = l̂pe (θ) + εw (θ)

ˆ
Θ

Γ (θ, θ′) l̂pe (θ′) dθ′, (58)

where εw (θ), and Γ (θ, θ′) are given by their generalized de�nitions above, and where

l̂pe (θ) ≡ −εr (θ)
T̂ ′ (y (θ))

1− T ′ (y (θ))
+ εR (θ)

T̂ (y (θ))

(1− T ′ (y (θ))) y (θ)
.

The interpretation of this formula is identical to that of (10), except that the partial-equilibrium

impact of the reform l̂pe (θ) is modi�ed: in addition to the substitution e�ect already described in

the quasilinear model, labor supply now also rises by an amount proportional to εR (θ) due to an

income e�ect induced by the higher total tax payment T̂ (y (θ)) of agent θ. Note that the partial-

equilibrium formula for l̂pe (θ) is identical to that derived in models with exogenous wages by Saez

(2001) and Golosov, Tsyvinski, and Werquin (2014), except that that now the elasticities εr (θ) and

εR (θ) take into account the own-wage e�ects α (θ). The (closed-form) incidence on wages, utilities

and government revenue are then derived identically to the corresponding formulas in Section 2.2.

Proof of equation (58). In the model with exogenous wages, the incidence of a tax reform T̂ on

labor supply is given by (see Golosov, Tsyvinski, and Werquin (2014))

l̂pe (θ) ≡ −ecr (θ)
T̂ ′ (y (θ))

1− T ′ (y (θ))
+ eR (θ)

T̂ (y (θ))

(1− T ′ (y (θ))) y (θ)
.

Now, in the general-equilibrium model, consider a tax reform T̂ . The perturbed �rst order condition

reads (letting wθ = w (θ), etc. for conciseness):

0 =
[
1− T ′

(
(wθ + µŵθ)

(
lθ + µl̂θ

))
− µT̂ ′ (wθlθ)

]
(wθ + µŵθ) . . .

× Uc
[
(wθ + µŵθ)

(
lθ + µl̂θ

)
− T

(
(wθ + µŵθ)

(
lθ + µl̂θ

))
− µT̂ (wθlθ) , lθ + µl̂θ

]
+ Ul

[
(wθ + µŵθ)

(
lθ + µl̂θ

)
− T

(
(wθ + µŵθ)

(
lθ + µl̂θ

))
− µT̂ (wθlθ) , lθ + µl̂θ

]
.
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Tedious but straightforward algebra leads to the following �rst-order Taylor expansion:

0 =

[
(1− T ′ (yθ))

2
wθyθUcc (θ) + (1− T ′ (yθ)) yθUcl (θ) + . . .

(1− T ′ (yθ))wθUc (θ)− wθyθT ′′ (yθ)Uc (θ)

]
ŵθ
wθ

+

[
(1− T ′ (yθ))

2
w2
θUcc (θ) + (1− T ′ (yθ))wθUcl (θ) + . . .

(1− T ′ (yθ))wθUcl (θ) + Ull (θ)− w2
θT
′′ (yθ)Uc (θ)

]
l̂θ

− wθUc (θ) T̂ ′ (yθ)− [(1− T ′ (yθ))wθUcc (θ) + Ucl (θ)] T̂ (yθ) .

Solving for l̂θ yields

l̂θ
lθ

=
eR (θ) + (1− p (yθ)) e

c
r (θ)

1 + p (yθ) ecr (θ)

ŵθ
wθ

− ecr (θ)

1 + p (yθ) ecr (θ)

T̂ ′ (yθ)

1− T ′ (yθ)
− eR (θ)

1 + p (yθ) ecr (θ)

T̂ (yθ)

(1− T ′ (yθ)) yθ
.

Now, identical calculations as in the quasilinear model (see equation (49)) implies that in response

to the tax reform T̂ , the �rst-order change in the wage w (θ) = ∂F
∂L(θ) is given by

ŵθ
wθ

= − 1

εDw (θ)

l̂θ
lθ

+

ˆ
Θ

γ (θ, θ′)
l̂θ′

lθ′
dθ′.

We therefore obtain the following integral equation:

l̂θ
lθ

=− εcr (θ)
T̂ ′ (yθ)

1− T ′ (yθ)
− εR (θ)

T̂ (yθ)

(1− T ′ (yθ)) yθ
+ εw (θ)

ˆ
Θ

γ (θ, θ′)
l̂θ′

lθ′
dθ′.

Following the same steps as in Proposition 1, the solution to this integral equation is given by

l̂ (θ) = l̂pe (θ) + εw (θ)

ˆ
Θ

Γ (θ, θ′) l̂pe (θ′) dθ′.

D.1.3 Generalization of Corollary 4

We now generalize formula (20) characterizing the incidence of tax reforms on government revenue

when the production function is CES and the tax schedule is CRP. Suppose in addition that the

utility function has the form U (c, l) = c1−η

1−η −
l1+ 1

ε

1+ 1
ε

. The revenue e�ect of the elementary tax reform
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at income y∗ is then given by

R̂ (y∗) = R̂ex (y∗) (59)

+ φ εSr
T ′ (y∗)− T̄ ′

1− T ′ (y∗)
y∗fY (y∗)

1− FY (y∗)
− φ εSr η E

[
T ′ (y)− T̄ ′

1− T ′ (y)
|y > y∗

]
,

where T̄ ′ = E [yT ′ (y)] /Ey is the income-weighted average marginal tax rate in the economy and

where φ is as de�ned in Corollary 4. Note that for η = 0, this formula reduces to equation (20).

If η > 0 and the baseline tax schedule is progressive, then the �rst and second general-equilibrium

contributions have opposite signs. If top incomes are Pareto distributed and the baseline tax schedule

is CRP, we derive below a necessary and su�cient condition on the progressivity parameter p, the

Pareto coe�cient and the curvature of the utility function η such that the �rst general-equilibrium

term in (59) is larger than the second as y → ∞, so that the theoretical insights of Section 3.2

remain valid with income e�ects. For empirically plausible values of the income e�ect parameter,

the magnitude of the general-equilibrium contribution to government revenue incidence obtained in

Section is reduced by a third (in particular, it keeps the same direction).

Proof of equation (59). Assume that the utility function has the form c1−η

1−η −
l1+ 1

e

1+ 1
e

, that the

production function is CES and the initial tax schedule is CRP. First, we show that the labor supply

elasticities εc,Sr (θ), εSw (θ) and εSR (θ) take a particularly simple form given these assumptions. We

easily get

εc,Sr =
e

ηe(1− p) + pe+ 1

εSR =− (1− p)ηεc,Sr (θ)

εSw =(1− p)εc,Sr + εSR = (1− p) (1− η) εc,Sr .

Next, we turn to to solution to the integral equation given the assumption of a CES production

function. As in the case of a quasilinear utility function, the kernel of the integral equation is

multiplicatively separable, and its solution (given an elementary tax reform at income y(θ∗)) is

given by

l̂ (θ) =− εr(θ
∗)

1− T ′(y(θ∗))
δ (y (θ)− y (θ∗)) +

εR(θ)

(1− T ′(y(θ))y(θ)
I{θ>θ∗} +

εw(θ)

1−
´

Θ
εw(θ′)γ(θ, θ′)dθ′

×

[
−γ(θ, θ∗)

εr(θ
∗)

1− T ′(y(θ∗))
+

ˆ θ

θ∗
γ(θ, θ′)

εR(θ′)

(1− T ′(y(θ′))y(θ′)
dθ′

]
. (60)

Next, the revenue e�ect of a tax reform T̂ is given by:

R̂ =

ˆ
T̂ (y(θ))dF (θ) +

ˆ
T ′(y(θ))y(θ)

[
l̂(θ) + ŵ(θ)

]
dF (θ)

=

ˆ
T̂ (y(θ))dF (θ) +

ˆ
θ

T ′(y(θ))y(θ)

[
l̂(θ)

(
1 +

1

εSw(θ)

)
+
εSr (θ)

εSw(θ)

T̂ ′(y(θ))

1− T ′(y(θ))
− εSR(θ)

εSw(θ)

T̂ (y(θ))

(1− T ′(y(θ))y(θ)

]
dF (θ) .
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Focusing on the elementary tax reforms at y(θ∗) and substituting for l̂(θ) using (60) leads to:

R̂(y(θ∗)) = R̂ex(y(θ∗)) +
εSr (θ∗)

1− T (y(θ∗))

(
1

εDw (θ∗)

1 + εSw(θ∗)

1 +
εSw(θ∗)
εDw (θ∗)

T ′(y(θ∗))y(θ∗)f(θ∗) . . .

−
ˆ
T ′(y(θ))y(θ)

γ(θ, θ∗)
1+εSw(θ)

1+εSw(θ)/εDw (θ)
1

1+εSw(θ∗)/εDw (θ∗)

1−
´
εw(x)γ(x, x)dx

dF (θ)

)

+

ˆ θ

θ∗

εSR(θ′)

(1− T ′(y(θ′))y(θ′)

(
1

εDw (θ′)

1 + εSw(θ′)

1 +
εSw(θ′)
εDw (θ′)

T ′(y(θ′))y(θ′)f(θ′)

−
ˆ
T ′(y(θ))y(θ)

γ(θ, θ′)
1+εSw(θ)

1+εSw(θ)/εDw (θ)
1

1+εSw(θ′)/εDw (θ′)

1−
´
εw(x)γ(x, x)dx

dF (θ)

)
dθ′

where we used εR
(
1 + 1/εSw

)
−εSR/εSw = εSR+

−εSR/ε
D
w−ε

S
Rε

S
w/ε

D
w

1+εSw/ε
D
w

and the analogous relationship between

εSr and εr. Using the CES and the CRP functional forms, which imply constant elasticities, as well

as the relationship εSR = −(1− p)ηεc,Sr , we obtain

R̂(y(θ∗))

1− F (θ∗)
=
R̂ex(y(θ∗))

1− F (θ∗)
(61)

+
1

εDw

1 + εSw

1 +
εSw
εDw

εSr

(
y(θ∗)f(θ∗)

1− F (θ∗)

(
T ′(y(θ∗))− T̄ ′
1− T ′(y(θ∗))

)
− η (1− p)E

[
T ′(y(θ))− T̄ ′

1− T ′(y(θ))
|θ > θ∗

])

where T̄ ′ is the income-weighted average of the marginal tax rate. But since the tax schedule is

CRP we have

T̄ ′ =

´
Θ

[1− (1−m) y(θ)−p]y(θ)dF (θ)

ȳ
= 1− (1−m)E[y(θ)1−p]

1

ȳ
.

Equation (61) can thus be rewritten as

R̂(y(θ∗))

1− F (θ∗)
=
R̂ex(y(θ∗))

1− F (θ∗)
+

1

εDw

1 + εSw

1 +
εSw
εDw

εSr

(
y(θ∗)f(θ∗)

1− F (θ∗)

((
y(θ∗)pE[y(θ)1−p]

ȳ
− 1

))

− η(1− p)
(
E[y(θ′)p|θ′ > θ∗]E[y(θ)1−p]

ȳ
− 1

))

Now assume that incomes above θ∗ are Pareto distributed with tail parameter Π. Then we have

E[yp|y > y∗] = Π
Π−py

∗p. Moreover, using y(θ∗)f(θ∗)
1−F (θ∗) → Π and E(y1−p)/E(y) = 1−T̄ ′

1−m , we get

R̂(y(θ∗))

1− F (θ∗)
=
R̂ex(y(θ∗))

1− F (θ∗)
+

1

εDw

1 + εSw
1 + αεSw

εSr (62)

×
[
Π

(
1− T̄ ′

1− T ′(y(θ∗))
− 1

)
− η(1− p)

(
Π

Π− p
1− T̄ ′

1− T ′(y(θ∗))
− 1

)]
.

The term in brackets becomes positive for y large enough if and only if Π > η(1 − p) Π
Π−p (i.e.,
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Π > η + p(1− η)). This is because T ′(y)→ 1 as y →∞.

Equation (62) leads to simple calculations of the additional general equilibrium e�ect on gov-

ernment revenue. To illustrate this, we consider a parameterization that is based on the empirical

literature that estimates the impact of lottery wins on labor supply (Imbens, Rubin, and Sacerdote

(2001), Cesarini et al. (2017)). Using these wealth shocks they �nd that a one dollar increase in

wealth leads to a decrease in life-cycle labor income (in net present value) of 10-11 cents. Thus, we

calibrate our (static) model such that an increase in unearned income of 1 dollar implies a decrease

in earnings of 10-11 cents. Further, we set εc,Sr (θ) = 0.33 Chetty (2012). As in our benchmark

calibration in the main body, we assume that p = 0.15. To target the value of the lottery papers,

we set εSR (θ) = −0.08, which captures approximatey a 10-11 cents decrease in gross income if the

marginal tax rate is around 25%. The relationship εSR (θ) = −(1 − p)ηεc,Sr then yields a value of

η ≈ 0.29. Finally, the value for e that is consistent with εc,Sr = 0.33 is e = 0, 38.

Evaluating the second term on the right hand side of (62) for these numbers reveals that it

becomes positive for income levels where the marginal tax rate is above 27,6%, a number that is

slightly higher than the income-weighted average marginal tax rate, which is equal to 26%. The

income levels that correspond to these tax rates are approximately $85,000 and $77,000.

A last simple exercise is then to evaluate general equilibrium revenue e�ect at a higher income

level and compare it to the value that is obtained in the absence of income e�ects. We do this

comparison for the income level of $200,000 and �nd that the additional revenue e�ect coming from

the endogeneity of wages is reduced by 28% (32% respectively) if the elasticity of substitution is

σ = 0.66 (σ = 3.1 respectively).

D.2 Intensive and extensive margins

D.2.1 Formal model

We now extend the model of Section 1 to an environment where individuals choose their labor supply

both on the intensive margin (hours l conditional on participating in the labor force) and on the

extensive margin (participation decision).

There are two dimensions of heterogeneity: individuals are indexed by their skill θ ∈ [θ, θ̄] ≡ Θ

and by their �xed cost of working κ ∈ R+. The utility function is given by

U (c, l) = u[c− v (l)− κI{l>0}],

where I{l>0} is an indicator function equal to 1 if the agent is employed (i.e., l > 0).

An individual of type (θ, κ) chooses both whether to participate in the labor force at wage w (θ),

and if so, how much e�ort to provide. If he decides to stay non-employed, his labor supply and

income are equal to zero and he consumes the government-provided transfer −T (0). Thus agent

(θ, κ) solves the maximization problem

U (θ, κ) ≡ max

{
sup
l>0

u [w (θ) l − T (w (θ) l)− v (l)− κ] ; u (−T (0))

}
.
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Due to the lack of income e�ects, the labor supply l (θ) that an agent (θ, κ) chooses conditional on

participation is independent of κ, and it is the solution to the �rst order condition

v′ (l (θ)) = [1− T ′ (w (θ) l (θ))]w (θ) .

Moreover, an agent with skill θ decides to participate if and only if his �xed cost of work κ is smaller

than a threshold κ̄ (θ), given by

κ∗ (θ) = w (θ) l (θ)− T (w (θ) l (θ))− v (l (θ)) + T (0) . (63)

Note that both l (θ) and κ∗ (θ) are endogenous to the tax schedule: the intensive margin choice

of labor e�ort l (θ) depends on the marginal tax rate T ′ (y (θ)), while the extensive margin choice

of participation depends on the average tax rate relative to transfers, T (y (θ)) − T (0). Denote by

f (θ, κ) the density of κ conditional on skill θ, by

π (θ) =

´ κ∗(θ)
0

f (θ, κ) dκ´∞
0
f (θ, κ) dκ

the employment rate within the population of skill θ, and by

L (θ) = l (θ)

ˆ κ∗(θ)

0

f (θ, κ) dκ

the total amount of labor supplied by workers of skill θ. The rest of the environment is identical to

that of Section 1.

D.2.2 Elasticity concepts

We de�ne the participation elasticity ηST (θ) of the population with skill θ with respect to their

average tax rate as

ηST (θ) ≡ ∂ lnπ (θ)

∂ ln [y (θ)− T (y (θ)) + T (0)]
= [y (θ)− T (y (θ)) + T (0)]

f (θ, κ∗ (θ))

π (θ)
´∞

0
f (θ, κ) dκ

. (64)

This elasticity is determined by the reservation density f (θ, κ∗ (θ)) of agents with skill θ who are

close to indi�erence between participation and non-participation in the baseline tax system. We also

de�ne the participation elasticity ηSw (θ) with respect to the wage as

ηSw (θ) ≡ ∂ lnπ (θ)

∂ lnw (θ)
= (1− T ′ (y (θ))) y (θ)

f (θ, κ∗ (θ))

π (θ)
´∞

0
f (θ, κ) dκ

. (65)

Note that these elasticities are partial equilibrium concepts: they ignore the feedback impact of

these initial adjustments in participation on individual wages and, in turn, labor supply. We then
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de�ne the partial equilibrium elasticities as

εr (θ) =
εSr (θ)

1 + (εSw (θ) + ηSw (θ))α (θ)
,

εw (θ) =
εSw (θ)

1 + (εSw (θ) + ηSw (θ))α (θ)
,

ηT (θ) =
ηST (θ)

1 + (εSw (θ) + ηSw (θ))α (θ)
,

ηw (θ) =
ηSw (θ)

1 + (εSw (θ) + ηSw (θ))α (θ)
.

(66)

We �nally de�ne the GE cross-wage elasticities by Γ (θ, θ′) =
∑
n≥1 Γn (θ, θ′), where Γ1 (θ, θ′) =

γ (θ, θ′) and for all n ≥ 2,

Γn (θ, θ′) =

ˆ
Θ

Γn−1 (θ, θ′′) (εw (θ′′) + ηw (θ′′)) γ (θ′′, θ′) dθ′′.

Compared to its expression (11) in the quasilinear environment, Γ (θ, θ′) now takes into account that

the labor supply changes along both the intensive and the extensive (participation) margins of type

θ′′ impact their wage, through the respective elasticities εw (θ′′) and ηw (θ′′). Let

ρ (θ) ≡ f (θ, κ∗ (θ))´ κ∗(θ)
0

f (θ, κ) dκ

denote the density of employed agents on the verge of non-participation.

D.2.3 Tax incidence formula

The incidence of an arbitrary tax reform T̂ on the total labor supply L (θ) of agents of skill θ is

given by the following formula, which generalizes Proposition 1:

L̂ (θ) =L̂pe (θ) + (εw (θ) + ηw (θ))

ˆ
Θ

Γ (θ, θ′) L̂pe (θ′) dθ′, (67)

where εw (θ), and Γ (θ, θ′) are replaced by their generalized de�nitions, and where

L̂pe (θ) ≡ −εr (θ)
T̂ ′ (y (θ))

1− T ′ (y (θ))
− ηT (θ)

T̂ (y (θ))

y (θ)− T (y (θ)) + T (0)
.

The interpretation of this formula is identical to that of (10), with two di�erences. First, the partial-

equilibrium impact (L̂pe (θ)) is modi�ed: in addition to the substitution e�ect already described in

the quasilinear model, the tax reform now raises the tax payment of agents with skill θ by T̂ (y (θ)),

which lowers the total labor supply of that skill by an amount proportional to ηT (θ), by inducing

those with a large �xed cost of working to drop out of the labor force. Second, the change in the wage

of type θ induces a decrease in total hours (from both intensive and extensive margin responses)

given by (εw (θ) + ηw (θ)) rather than simply εw (θ). From this formula, it is straightforward to
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obtain the incidence of any tax reform on individual labor supplies, wages, participation thresholds,

participation rates, utilities, and government revenue.

Proof of formula (67). We �rst derive the incidence of a tax reform T̂ on the wage w (θ), partic-

ipation threshold κ∗ (θ), individual labor supply l (θ), and aggregate labor supply L (θ) of agents of

skill θ. We have

ŵ (θ) = lim
µ→0

1

µ

[
F ′θ({

[
l (θ′) + µl̂ (θ′)

] ˆ κ∗(θ′)+µκ̂∗(θ′)

0

f (θ′, κ) dκ}θ′∈Θ)

−F ′θ({l (θ′)
ˆ κ∗(θ′)

0

f (θ′, κ) dκ}θ′∈Θ)

]

=w (θ)

[
− 1

εDw (θ)

{
l̂ (θ)

l (θ)
+ ρ (θ) κ̂∗ (θ)

}
+

ˆ
Θ

γ (θ, θ′)

{
l̂ (θ′)

l (θ′)
+ ρ (θ′) κ̂∗ (θ′)

}
dθ′

]
.

Moreover, we have

κ̂∗ (θ) = lim
µ→0

1

µ

{
[w (θ) + µŵ (θ)]

[
l (θ) + µl̂ (θ)

]
− w (θ) l (θ)

− T
(

[w (θ) + µŵ (θ)]
[
l (θ) + µl̂ (θ)

])
+ T (w (θ) l (θ))

−µT̂
(

[w (θ) + µŵ (θ)]
[
l (θ) + µl̂ (θ)

])
− v

([
l (θ) + µl̂ (θ)

])
+ v (l (θ))

}
= [1− T ′ (y (θ))] y (θ) ŵ (θ)− T̂ (y (θ)) .

Next, a Taylor expansion of the agent's �rst-order condition

0 =
{

1− T ′
(

[w (θ) + µŵ (θ)]
[
l (θ) + µl̂ (θ)

])
− µT̂ ′

(
[w (θ) + µŵ (θ)]

[
l (θ) + µl̂ (θ)

])}
× [w (θ) + µŵ (θ)]− [1− T ′ (w (θ) l (θ))]w (θ)− v′

([
l (θ) + µl̂ (θ)

])
+ v′ (l (θ))

leads to
l̂ (θ)

l (θ)
=− εSr (θ)

T̂ ′ (w (θ) l (θ))

1− T ′ (y (θ))
+ εSw (θ) ŵ (θ) .

We �nally have

L̂ (θ) = lim
µ→0

1

µ

{[
l (θ) + µl̂ (θ)

] ˆ κ∗(θ)+µκ̂∗(θ)

0

f (θ, κ) dκ− l (θ)
ˆ κ∗(θ)

0

f (θ, κ) dκ

}

=L (θ)

{
l̂ (θ)

l (θ)
+ ρ (θ) κ̂∗ (θ)

}
.

These equations lead to

L̂ (θ)

L (θ)
=− εr (θ)

T̂ ′ (y (θ))

1− T ′ (y (θ))
− ηT (θ)

T̂ (y (θ))

y (θ)− T (y (θ)) + T (0)

+ (εw (θ) + ηw (θ))

ˆ
Θ

γ (θ, θ′)
L̂ (θ′)

L (θ′)
dθ′.
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This is an integral equation. Its solution can be found following identical steps as in the pure

intensive margin environment, and is given by (67). The incidence on wages is then given by

ŵ (θ) =− 1

εDw (θ)
L̂ (θ) +

[
L̂ (θ)− L̂pe (θ)

εw (θ) + ηw (θ)

]
.

The incidence on participation and individual labor supplies is then easily obtained from the expres-

sions for κ̂∗ (θ) and l̂ (θ) derived above.

D.3 Multiple sectors

In this section we consider a multi-sector model where the sorting of agents across sectors is not

a�ected by tax reforms. In section D.4 below, we consider a Roy model in which the assignment is

endogenous to taxes and responds to tax reforms.

D.3.1 Model and elasticity concepts

The aggregate production function F we used in Section 1 takes as inputs the labor supply of each

one-dimensional skill type θ ∈ Θ. In this framework, the skill θ of an agent can be interpreted as

her percentile in the wage distribution {w (θ)}θ∈Θ. Suppose now that the population is divided into

N groups (e.g., sectors, education levels, etc.). Each group i is composed of a continuum of agents

indexed by their skill θ ∈ Θ who earn wage wi (θ). The assignment of each individual to a given

group i is exogenous. Note that the wage distributions {wi (θ)}θ∈Θ and {wj (θ)}θ∈Θ of di�erent

groups i 6= j overlap. The aggregate production function is now de�ned by

F ({Li (θ)}(θ,i)∈Θ×{1,...,N}), (68)

where Li (θ) is the aggregate labor supply of the agents of type θ who work in sector i.

We de�ne the wage, labor supply, and income of type θ in sector i by wi (θ), li (θ), and yi (θ)

respectively, and let fi (θ) the density of types in that sector. The �rst order condition of this agent

writes

v′ (lθ,i) = [1− T ′ (wθ,ilθ,i)]wθ,i.

De�ne this agent's labor supply elasticitiy with respect to the retention rate as

εSr (θ, i) =
e (θ, i)

1 + e (θ, i) p (yθ,i)
, where e (θ, i) =

v′ (lθ,i)

lθ,iv′′ (lθ,i)

and with respect to the wage as

εSw (θ, i) = (1− p (yθ,i)) ε
S
r (θ, i) .

We also de�ne the cross-wage elasticity of the wage of agent θ in sector i, with respect to the labor
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supply of agent θ′ in sector j, as

γ ((θ, i) , (θ′, j)) =
∂ lnwθ,i
∂ lnLθ′,j

=
Lθ′,jF ′′(θ,i),(θ′,j)

F ′(θ,i)
, (69)

and the own-wage elasticity of agent θ in sector i as

1

εDw (θ, i)
=
∂ lnwθ,i
∂ lnLθ,i

− lim
θ′→θ

∂ lnwθ′,i
∂ lnLθ,i

.

We �nally de�ne the elasticities of equilibrium labor as

εr (θ, i) =
εSr (θ, i)

1 + εSw (θ, i) /εDw (θ, i)
, εw (θ, i) =

εSs (θ, i)

1 + εSw (θ, i) /εDw (θ, i)
.

A change of variables then allows us to de�ne, for each income-group pair (y, i), the wage wy,i of

the agents who earn income y in group i, and the N × 1 vector wy = (wy,i)i=1,...,N . We de�ne

analogously the vectors ly, l̂y/ly (where the �/� sign denotes here an element-by-element division),

εr (y), εw (y), and the N ×N matrices γ (y, y′) and Γ (y, y′).

D.3.2 Tax incidence formula

We now show that the result of Lemma 1 is replaced by a system of linear integral equations, which

can be solved using analogous steps as those leading to Proposition 1. We obtain that the incidence

of an arbitrary tax reform T̂ on individual labor supplies is given in closed-form by

l̂y
ly

=− εr (y)
T̂ ′ (y)

1− T ′ (y)
−
ˆ
R+

Diag (εw (y))Γ (y, y′) εr (y′)
T̂ ′ (y′)

1− T ′ (y′)
dy′. (70)

The interpretation of this formula is identical to that of (10), with the only di�erence that the

incidence of tax reforms now naturally depends on a larger number of (cross-sector) elasticities.

Proof of formula (70). The �rst-order condition in the perturbed equilibrium, after a tax reform

T̂ , reads

0 =v′
(
lθ,i + l̂θ,i

)
−
[
1− T ′

(
(wθ,i + ŵθ,i)

(
lθ,i + l̂θ,i

))
− T̂ ′ (wθ,ilθ,i)

]
(wθ,i + ŵθ,i) .

Taking a �rst-order Taylor expansion and solving for l̂θ,i leads to

l̂θ,i =lθ,i

[
−εSr (θ, i)

T̂ ′ (yθ,i)

1− T ′ (yθ,i)
+ εSw (θ, i)

ŵθ,i
wθ,i

]
.

Now, the perturbed wage equation writes

0 = (wθ,i + ŵθ,i)−

F ′(θ,i) +

N∑
j=1

ˆ
Θ

F ′′(θ,i),(θ′,j) l̂θ′,jfj (θ′) dθ′


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so that

ŵθ,i
wθ,i

=

N∑
j=1

ˆ
Θ

γ ((θ, i) , (θ′, j))
l̂θ′,j
lθ′,j

dθ′ +
1

εDw (θ, i)

l̂θ,i
lθ,i

.

We therefore obtain the following system of integral equations for labor supply: for all θ, i,

l̂θ,i
lθ,i

=− εr (θ, i)
T̂ ′ (yθ,i)

1− T ′ (yθ,i)
+ εw (θ, i)

N∑
j=1

ˆ
Θ

γ ((θ, i) , (θ′, j))
l̂θ′,j
lθ′,j

dθ′.

De�ne γi,j (y (θ) , y (θ′)) =
(
dy
dθ (θ′)

)−1

γi,j (θ, θ′). Changing variables from types θ to incomes y in

each sector i implies

l̂y,i
ly,i

=− εr (y, i)
T̂ ′ (y)

1− T ′ (y)
+ εw (y, i)

N∑
j=1

ˆ
Θ

γ ((y, i) , (y′, j))
l̂y′,j
ly′,j

dy′.

Now de�ne, for each income y, the N × 1 vectors

ly = (ly,i)i=1,...,N ,

l̂y =
(
l̂y,i

)
i=1,...,N

,

and
εr (y) = (εr (y, i))i=1,...,N

εw (y) = (εw (y, i))i=1,...,N ,

and for each (y, y′), the N ×N matrix

γ (y, y′) = (γ ((y, i) , (y′, j)))i,j=1,...,N .

We can then rewrite the previous system of integral equations in matrix form: for all y,

(̂ly/ly) =− εr (y)
T̂ ′ (y)

1− T ′ (y)
+

ˆ ∞
0

Diag (εw (y))γ (y, y′) (̂ly′/ly′)dy
′,

where Diag (εw (y)) is the N ×N diagonal matrix with elements (εw (y, i))i=1,...,N and the operator

�/� denotes an element-by-element division. Now this integral equation can be easily solved in closed

form. De�ne the matrices (Γn (y, y′))n≥1 by Γ1 (y, y′) = γ (y, y′) and for all n ≥ 2,

Γn (y, y′′) =

ˆ ∞
0

Γn−1 (y, y′′)Diag (εw (y′′))γ (y′′, y′) dy′′,

and let Γ (y, y′) =
∑∞
n=1 Γn (y, y′). Following the same steps as those leading to Proposition 1, we

easily obtain

(̂ly/ly) =− εr (y)
T̂ ′ (y)

1− T ′ (y)
−
ˆ ∞

0

Diag (εw (y))Γ (y, y′) εr (y′)
T̂ ′ (y′)

1− T ′ (y′)
dy′.
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This formula is the direct analogue of (10). It naturally depends on a larger number of elasticities,

namely, the labor supply elasticities at each income level in each sector, and the cross-wage elasticities

between any two types in any two sectors.

D.3.3 Canonical model: two education groups

A special case of the general production function (68) is the so-called canonical model (Acemoglu

and Autor, 2011), where individuals are categorized according to their level of education (high school

vs. college). This model has been studied empirically by Katz and Murphy (1992) and Card and

Lemieux (2001).

Formal model

Consider the following production function (for now we only assume constant returns to scale):

F (LH ,LC)

where

LC =

ˆ
Θ

lC(θ)θdGC(θ) and LH =

ˆ
Θ

lH(θ)θdGH(θ)

are aggregate college labor and aggregate high school labor, respectively. Wages are

wj (θ) =
∂F

∂Lj (θ)
= wj × θ,

where wj ≡ ∂F
∂Lj

for j = H,C. In particular, we have
wi(θ′)
wi(θ)

= θ′

θ for any two types (θ, θ′), so that

the relative wages within each group i are given by the ratio of the corresponding exogenous skills.

An individual of type θ in sector j solves

max wjθl − T (wjθl)− v(l).

The optimal labor supply depends only the product wjθ (rather than on the sector j and on the

type θ independently), so that individuals (θ′, C) and (θ′′, H) earn the same income if wCθ
′ = wHθ

′′.

Denote by ω the product of ability and wage. Its density is

f(ω) = gC

(
ω

wC

)
+ gH

(
ω

wH

)
.

Further, de�ne the density of incomes by fY (y(ω)) = f(ω) 1
y′(ω) .

Now de�ne the cross- and own-wage elasticities:

γi,j =
dwi
dLj

Lj

wi
.
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Euler's homeogeous function theorem reads

γii + γji
Ljwj
Liwi

= 0. (71)

Finally, we also de�ne aggregate income in both sectors

Yi = wiLi,

as well as the aggregate sector shares

si =
Yi

Y1 + Y2
.

Generalization of formula (20)

Suppose now in addition that the aggregate production function is given by a CES aggregator of

LH and LC , i.e.,

F =
[
L

σ−1
σ

H + L
σ−1
σ

C

] σ
σ−1

.

In this model, there is an in�nite elasticity of substitution between workers within each education

level, and a �nite and constant elasticity of substitution σ across the two groups. Suppose further-

more that the disutility of labor is isoelastic and that the initial tax schedule is CRP, so that the

labor supply elasticities εSr and εSw are constant.

We obtain:

R̂ (y∗) = R̂ex (y∗) + φεSr [sC (y∗)− sC ]
T̄ ′C − T̄ ′H
1− T ′(y∗)

y∗fY (y∗)

1− FY (y∗)
, (72)

where R̂ex (y∗) is given by (17), T̄ ′i =
´
T ′ (y) yfY,i (y) dy is the income-weighted average marginal

tax rate in education group i = H,C, sC(y∗) is the share of individuals earning y∗ that are college-

educated, sC is the share of aggregate income accruing to college-educated workers, and φ is de�ned

as in Corollary 4.

Proof of equation (72).
Incidence of tax reforms on labor supply. The change in labor supply due to a tax reform

T̂ is given by:

l̂i (ω)

li (ω)
= −εSr (ω)

T̂ ′ (y (ω))

1− T ′ (y (ω))
+ εSw (ω)

[
γiiL̂i + γijL̂j

]
which we can also write as a linear system of two integral equations

l̂i (ω)

li (ω)
=
l̂pei (ω)

li (ω)
+ εSw (ω)

[
γii

ˆ
Ω

l̂i(ω
′)

li(ω′)

li(ω
′) ω

′

wi

Li
gi

(
ω′

wi

)
dω′ + γij

ˆ
Ω

l̂j(ω
′)

lj(ω′)

lj(ω
′) ω

′

wj

Lj
gj

(
ω′

wj

)
dω′

]

where we denote
l̂pei (ω)

li(ω) = −εSr (ω) T̂ ′(y(ω))
1−T ′(y(ω)) . Solving this system using the usual techniques yields,
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after some tedious but straightforward algebra:

l̂i (ω)

li (ω)
=
l̂pei (ω)

li (ω)
+ εSw (ω)

1

1− γjjAj − γiiAi

[
γii
dL pe

i

Li
+ γij

dL pe
j

Lj

]
,

where we denote

Ai =

ˆ
Ω

εSw(ω′)
li(ω

′) ω
′

wi

Li
gi

(
ω′

wi

)
dω′

and

L̂ pe
i =

ˆ
Ω

l̂pei (ω′)

li(ω′)
li(ω

′)
ω′

wi
gi

(
ω′

wi

)
dω′.

If the tax schedule is CRP and the disutility of labor is isoelastic, we have Ai = εSw.

Incidence of tax reforms on government revenue. The �rst-order e�ects of the tax reform

T̂ on government revenue are given by

R̂ =

ˆ
Ω

T̂ (y(ω))f(ω)dω +

ˆ
Ω

T ′(y(ω))y(ω)

[
ŷC(ω)

yC(ω)
gC

(
ω

wC

)
+
ŷH(ω)

yH(ω)
gh

(
ω

wH

)]
dω.

The change in income reads

ŷi(ω)

yi(ω)
=

ŵi
wi

+
l̂i (ω)

li (ω)
=
l̂i (ω)

li (ω)

(
1 +

1

εSw(ω)

)
+
εr(ω) T̂ ′

1−T ′

εSw(ω)

=
l̂pei (ω)

li (ω)
+
(
1 + εSw (ω)

) L̂ pe

i

Li
γii +

L̂ pe

j

Lj
γij

1− γjjAj − γiiAi
,

where εSw (ω) ≡ εSw for a CRP tax code. Now focus on the elementary tax reform at y(ω∗). We then

have

L̂ pe
i = −εSr (ω∗)

l(ω∗)

1− T ′(y(ω∗))

ω∗

wi
gi

(
ω∗

wi

)
1

y′(ω∗)
.

The revenue e�ect of an elementary tax reform at y(ω∗) thus reads

R̂(ω∗) =R̂ex(ω∗) +
(
1 + εSw

)
εSr

l(ω∗)

1− T ′(y(ω∗))

ˆ
T ′(y(ω))y(ω)

×

{
gC

(
ω

wC

)
γCC

ω∗
wC

gC
(
ω∗
wC

)
1

y′(ω∗)
LC

+ γCH
ω∗
wH

gH
(
ω∗
wH

)
1

y′(ω∗)
LH

1− γCCεSw − γHHεSw
(73)

+ gH

(
ω

wH

)
γHC

ω∗
wC

gC
(
ω∗
wC

)
1

y′(ω∗)
LC

+ γHH
ω∗
wH

gH
(
ω∗
wH

)
1

y′(ω∗)
LH

1− γCCεSw − γHHεSw

}
dω
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Now we know from (71) that

ω∗

wC
gC

(
ω∗

wC

)
1

y′(ω∗)

LC
γCC +

ω∗

wH
gH

(
ω∗

wH

)
1

y′(ω∗)

LH
γCH

=− YH
YC

 ω∗

wC
gC

(
ω∗

wC

)
1

y′(ω∗)

LC
γHC +

ω∗

wH
gH

(
ω∗

wH

)
1

y′(ω∗)

LH
γHH

 .

and that

γHC = −γCC
wCLC

wHLH
.

Thus we obtain

R̂(ω∗) =R̂ex(ω∗) +

(
1 + εSw

)
εSr

1− γCCεSw − γHHεSw
1

1− T ′(y(ω∗))

(
T̄ ′C − T̄ ′H

)
(74)

×
(
γHHgH

(
ω∗

wH

)
1

y′(ω∗)
− γCCgC

(
ω∗

wC

)
1

y′(ω∗)

)
y(ω∗)

where T̄ ′i = 1
Yi

´
T ′(y(ω))y(ω)gi

(
ω
wi

)
dω is the income-weighted average marginal tax rate of sector

i workers. Next, assume a CES production function, which implies γHH = 1
σ sC and γCC = 1

σ sH .

De�ne sC(ω) =
gC

(
ω
wC

)
f(ω) and sH(ω) =

gH
(

ω
wH

)
f(ω) . The second term of (74) is then equal to

(
1 + εSw

)
εSr

1 +
εSw
σ

y(ω∗)

1− T ′(y(ω∗))

(
T̄ ′H − T̄ ′C

) 1

σ
fy(y∗) (sC − sC(ω∗)) ,

which proves the result in (72).

Comparing equation (72) to equation (20) reveals two di�erences arising from the alternative

modeling of the production. The �rst is that the general-equilibrium e�ect now depends on the

di�erence between the average marginal tax rates in the two education groups (or sectors), rather

than on the di�erence between the marginal tax rate at income y∗ vs. in the population as a whole.

This di�erence becomes clear if we interpret our production function in Section 1 as one that treats

each skill θ as a distinct sector. Second, the general-equilibrium contribution features an additional

term that captures the di�erence between the share of education group C at income level y∗ and

the overall share of income accruing to group C. This term is positive if college educated labor is

over-represented at income level y∗. This is because in this case an increase in the marginal tax rate

at y∗ raises wages in sector 1 and lowers them in sector 2. Note that this new term is bounded above

by 1, and is equal to 1 if sector 1 is composed of all of the agents with type θ∗ (and only them), as

is the case in Section 1.

D.4 Roy model and su�cient statistics

In this section we derive the incidence of tax reforms in the Roy model. In Sections D.4.2 and D.4.3,
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we start by studying an environment where there are only two sectors and the utility function is

quasilinear. We then argue in Section D.4.4 that our results do not rely on these restrictions. Our

main result is that the formula derived in Section D.3 for the N -sector case with exogenous sorting

remains unchanged when assignment is endogenous to taxes.

D.4.1 Overview of the results

We derive below the extension of our tax incidence formulas to the general Roy model of endogenous

assignment, in which there are N tasks or sectors, and endogenous and costless sorting of agents

into the various tasks. The endogeneity of assignment indeed makes the reduced-form production

function endogenous to tax changes. However, we show that our main formulas of Section D.3

carry over to this environment: in response to a tax reform, the switching of some agents into

di�erent tasks is appropriately accounted for by the cross-wage elasticities that we introduced in

(69). Of course, the expressions for these elasticities in terms of primitives now include additional

terms re�ecting the sorting, but they are still given in closed-form and, crucially, our tax incidence

formulas remain identical conditional on these su�cient-statistic variables. We now brie�y explain

this result; the full technical details are laid out in the following sections.

• We consider the standard Roy model as analyzed by, e.g., Rothschild and Scheuer (2013).

As in Section D.3, there is a continuum of skills within each of the N tasks or sectors; in

particular the wage distributions in di�erent tasks overlap. For simplicity, assume N = 2. The

tax schedule is a function of an agent's income only, and does not depend on his task. Output

is a function of the aggregate e�ective labor e�ort in each task. As in Rothschild and Scheuer

(2013), we assume for simplicity that skills within each task are perfect substitutes. To model

the endogenous assignment of skills into tasks, we suppose that each agent is characterized

by a two-dimensional type (θ1, θ2) corresponding to his skill in each task. Each agent chooses

to work in the task in which he earns the highest wage, equal to his corresponding skill

times the marginal product of that task's labor. As a result, agents will endogenously sort

into both tasks as follows. For each skill θ1, there is an (endogenous) threshold θ∗2 (θ1) such

that agents with skills in {(θ1, θ2) : θ2 ≤ θ∗2 (θ1)} work in task 1, and agents with skills in

{(θ1, θ2) : θ2 > θ∗2 (θ1)} work in task 2. Crucially, the marginal agent with types (θ1, θ
∗
2 (θ1)),

who is thus indi�erent between working in taks 1 and 2 in the initial equilibrium, earns the

same wage w1 (θ1) = w2 (θ∗2 (θ1)) whether he works in task 1 or task 2.

• Now, an arbitrarily non-linear tax reform in this environment has several e�ects on individual

labor supply. First, there is the standard partial-equilibrium e�ect, whereby a higher tax rate

at income y∗ lowers the labor e�ort of agents who initially earn that income level. Second, the

wage distribution is perturbed, which leads agents to adjust their labor supply further. Recall

that in the setting of Section D.3, with �xed assignment of skills to tasks, the wage of an

agent with initial income y∗ changed because of the adjustments in everyone's labor supply �

leading to a system of integral equations. Now there is an additional e�ect: in response to the

tax reform and the implied wage changes, some agents switch from one task/sector to another.

Therefore, the change in the wage of each agent now depends on both: (i) the adjustments
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of everyone's labor supplies (as before); and (ii) the adjustments of the endogenous sorting

thresholds θ∗2 (θ1) for each θ1. We can easily show that the adjustment of the threshold θ∗2 (θ1)

is in turn given by the relative wage changes of the marginal agent (θ1, θ
∗
2 (θ1)) in each task,

that is,

θ̂∗2 (θ1) = ŵ1 (θ1)− ŵ2 (θ∗2 (θ1)) .

E.g., if the wage in task 1 of the initially marginal agent increases more than his wage in task

2, then the threshold at which agents with task-1-type θ1 choose to work in task 2 increases,

i.e., some agents move from task 2 to task 1.

• Next, note that there is a one-to-one map between agents' wage changes ŵi (θi) and their

labor supply changes l̂i (θi). Indeed, it directly follows from the de�nition of the labor supply

elasticities with respect to the wage and the marginal tax rate that:

ŵi (θi) =
1

εSw (θi, i)
l̂i (θi) +

εSr (θi, i)

εSw (θi, i)

T̂ ′ (yi (θi))

1− T ′ (yi (θi))
.

Since the marginal agent initially earns the same wage in both tasks (w1 (θ1) = w2 (θ∗2 (θ1))),

and hence chooses the same labor supply and pays the same taxes, we obtain that the second

term in the previous equation is the same whether it is evaluated at (θi, i) = (θ1, 1) or

(θ∗2 (θ1) , 2). Combining the previous equations, we therefore obtain that the threshold change

θ̂∗2 (θ1) can be equivalently expressed as a function of the relative labor supply changes of the

marginal agent in each task, i.e.,

θ̂∗2 (θ1) =
1

εSw (θ1, 1)

[
l̂1 (θ1)− l̂2 (θ∗2 (θ1))

]
.

This is the key equation to understand why our results extend to the case of endogeous

assignment: since the threshold change can be expressed in terms of the labor supply changes,

it can therefore be incorporated as an element of the cross-wage elasticities. As a result, the

labor supply changes of agents are given by the following system of integral equations:

l̂i (θi) = −εSr (θi, i)
T̂ ′ (yi (θi))

1− T ′ (yi (θi))
− εSw (θi, i)

2∑
j=1

ˆ ∞
0

γ
(
(θi, i) ,

(
θ′j , j

))
l̂j(θ

′
j)dθ

′
j .

This system is identical to that we obtained in the baseline model and can thus be solved

exactly as in Section D.3.

• Finally, and importantly, the formula describing the incidence of tax reforms on individual

welfare is also identical to that in the model with exogenous assignment, since the marginal

agents initially have the same wage and hence the same utility in both sectors � implying no

welfare e�ects from the endogenous sectoral switching beyond the e�ects on relative wages

which are incorporated in the de�nition of the cross-wage elasticities.

• Of course, the variables γ ((θ, i) , (θ′, j)) do not have the same expression as in the model
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of Section D.3 where the assignment of skills to tasks is �xed. We derive these variables in

closed-form in the model with endogenous assignment in the next Section. Their structural

expressions can thus be used to derive properties of tax incidence in this environment. These

cross-wage elasticities are constructed as the impact of an increase l̂ (θ′, j) in the labor supply

of each agent with type θ′ in sector j, on the wage of type θ in sector i, keeping the labor

supply of everyone else �xed, but accounting for the endogenous re-sorting of agents between

tasks that the labor supply change l̂ (θ′, j) induces. They are thus the natural extension

to the model of endogenous sorting of the cross-wage elasticities we constructed in Section

D.3. Therefore our analysis can be interpreted in a su�cient-statistic sense (Chetty (2009a)):

conditional on the values of the elasticities that we uncover, the underlying structure of the

model that generates them (shape of the utility function, functional form of the production

function, exogenous vs. endogenous nature of the assignment of skills into tasks) is irrelevant.

D.4.2 Environment

Individuals

Agents are indexed by two types (θ1, θ2) representing their productivity in sectors 1 and 2, respec-

tively. The joint distribution of types in the population is denoted by f (θ1, θ2). We also denote

by fi (θi) the density of types in sector i, and by fi|j (θi | θj) the conditional density of types in

sector i among agents whose type in sector j is θj . Assume for simplicity that the utility function

is quasilinear. An agent with types (θ1, θ2) who works in sector i earns a wage wi (θi) and chooses

labor supply li (θi) that satis�es

v′ (li (θi)) = [1− T ′ (wi (θi) li (θi))]wi (θi) .

The indirect utility of the agent from working in sector i is given by

Ui (θi) = wi (θi) li (θi)− T (wi (θi) li (θi))− v (li (θi))

The agent of type (θi, θ−i) works in sector i i�

Ui (θi) ≥ U−i (θ−i) .

Firms and wages

The aggregate labor inputs in e�ciency units in sector i is then given by

Li =

ˆ ∞
0

ˆ ∞
0

θili (θi) I{Ui(θi)≥U−i(θ−i)}f (θ1, θ2) dθ2dθ1.
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The aggregate production function is given by F (L1,L2), so that the wages in sectors 1 and 2 are

given by

wi (θi) = F ′i (L1,L2)
dLi

dLi (θi)
= F ′i (L1,L2) θi.

In particular, we have
wi(θ′i)
wi(θi)

=
θ′i
θi

for any two types (θi, θ
′
i), so that the relative wages within

each sector i are given by the ratio of the corresponding exogenous skills. In particular, if the

production function over the two sectors is CES, we have F (L1,L2) =
[
L

σ−1
σ

1 + L
σ−1
σ

2

] σ
σ−1

, and

hence wi (θi) =
[
L

σ−1
σ

1 + L
σ−1
σ

2

] 1
σ−1

L
− 1
σ

i θi.

Properties of the initial equilibrium

Consider an individual with types (θ1, θ2). His value function is

V (θ1, θ2) = max {V1 (θ1) , V2 (θ1)} ,

where for all i,

Vi (θi) = max
l

wi (θi) l − T (wi (θi) l)− v (l) .

Denote by li (θi), or li (wi (θi)) the argmax of this maximization problem.

Note �rst that if the agent's types θ1, θ2 satisfy

θ2 = θ1
F ′1 (L1,L2)

F ′2 (L1,L2)
≡ θ∗2 (θ1) , (75)

then the agent is indi�erent between working in sectors 1 and 2 in the initial equilibrium. Indeed,

this relationship between the two types implies immediately that w1 (θ1) = w2(θ∗2(θ1)), and hence

l1 (θ1) = l2 (θ∗2(θ1)), T (y1 (θ1)) = T (y2 (θ∗2(θ1))), and V1 (θ1) = V2 (θ∗2(θ1)).

Conversely, consider the population of agents with sector-1 type θ1. Their value function in

sector 1, V1 (θ1), is independent of their sector-2 type θ2. Their value function in sector 2, V1 (θ2),

is strictly increasing in their sector-2 type θ2, since θ2 7→ w2 (θ2) is strictly increasing. Therefore,

there is a unique threshold type θ∗2 (θ1) (characterized by (75)) such that V1 (θ1) = V2 (θ2).

We have proved the following result:

Lemma. The following properties hold in the initial equilibrium:

(i) for each θ1, there is an (endogenous) threshold θ∗2 (θ1) such that agents in {(θ1, θ2) : θ2 ≤ θ∗2 (θ1)}
work in sector 1, and agents in {(θ1, θ2) : θ2 > θ∗2 (θ1)} work in sector 2;

(ii) for each θ2, there is an (endogenous) threshold θ∗1 (θ2) such that agents in {(θ1, θ2) : θ1 ≥ θ∗1 (θ2)}
work in sector 1, and agents in {(θ1, θ2) : θ1 < θ∗1 (θ2)} work in sector 2;
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(iii) there is a one-to-one map θi 7→ θ∗−i (θi), with inverse θ−i 7→ θ∗i (θ−i), i.e., a higher type θ1 in

sector 1 implies a higher threshold θ∗2 (θ1), and vice versa;

(iv) a marginal agent with types (θ1, θ2) such that U1 (θ1) = U2 (θ2), who is thus indi�erent between

working in sectors 1 and 2 in the initial equilibrium (i.e., θ2 = θ∗2 (θ1) or θ1 = θ∗1 (θ2)) earns

the same wage w1 (θ1) = w2 (θ2) whether he works in sector 1 or sector 2.

D.4.3 Incidence of tax reforms

Consider a tax reform T̂ (·). The perturbed �rst-order condition for labor supply of type θi in sector

i implies that the agent's percentage change in labor supply is given by:

l̂i (θi)

li (θi)
= −εSr (θi, i)

T̂ ′ (yi (θi))

1− T ′ (yi (θi))
+ εSw (θi, i)

ŵi (θi)

wi (θi)
, (76)

where the labor supply elasticities εSr (θi, i) and ε
S
r (θi, i) are de�ned by

εSr (θi, i) =

v′(li(θi))
li(θi)v′′(li(θi))

1 + v′(li(θi))
li(θi)v′′(li(θi))

yi(θi)T ′′(yi(θi))
1−T ′(yi(θi))

εSw (θi, i) =

(
1− yi (θi)T

′′ (yi (θi))

1− T ′ (yi (θi))

)
εSr (θi, i) .

The perturbed wage equation of type θi in sector i implies [note: we assume for simplicity a CES

production function, but none of our results rely on this functional form]

ŵi (θi)

wi (θi)
= − 1

σ

[
1 +

(
Li

L−i

)σ−1
σ

]−1(
L̂i

Li
− L̂−i

L−i

)
, (77)

so that the change in the wage following the tax reform is given by the changes in aggregate labor

inputs L1,L2. We consider two cases in turn: �xed assignment and endogenous assignment.

Fixed assignment

Suppose �rst that there is a positive �xed cost of switching from sector i to sector −i, so that the

assignment of agents to sectors is una�ected by the in�nitesimal tax reform. That is, for any θ1

(resp., θ2), the threshold θ
∗
2 (θ1) (resp., θ∗1 (θ2)) remains unchanged. This is the assumption we made

in Section D.3 above. Since

L1 =

ˆ ∞
θ1=0

ˆ θ∗2 (θ1)

θ2=0

θ1l1 (θ1) f (θ1, θ2) dθ2dθ1 =

ˆ ∞
0

θ1l1 (θ1)F2|1 (θ∗2 (θ1) | θ1) f1 (θ1) dθ1

L2 =

ˆ θ∗2 (θ1)

θ1=0

ˆ ∞
θ2=0

θ2l2 (θ2) f (θ1, θ2) dθ2dθ1 =

ˆ ∞
0

θ2l2 (θ2)F1|2 (θ∗1 (θ2) | θ2) f2 (θ2) dθ2,
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we obtain

L̂1

L1
=

1

L1

ˆ ∞
0

θ1l1 (θ1)F2|1 (θ∗2 (θ1) | θ1) f1 (θ1)
l̂1 (θ1)

l1 (θ1)
dθ1

L̂2

L2
=

1

L2

ˆ ∞
0

θ2l2 (θ2)F1|2 (θ∗1 (θ2) | θ2) f2 (θ2)
l̂2 (θ2)

l2 (θ2)
dθ2.

We thus have

ŵi (θi)

wi (θi)
= −

ˆ ∞
0

γ
(

(θi, i) ,
(
θ̃i, i

)) l̂i (θ̃i)
li

(
θ̃i

)dθ̃i +

ˆ ∞
0

γ
(

(θi, i) ,
(
θ̃−i,−i

)) l̂−i (θ̃−i)
l−i

(
θ̃−i

)dθ̃−i(78)
where the cross-wage elasticities are de�ned by

γ
(

(θi, i) ,
(
θ̃j , j

))
=

θ̃j lj

(
θ̃j

)
F−j|j

(
θ∗−j

(
θ̃j

)
| θ̃j
)
fj

(
θ̃j

)
σ
[
1 + (Li/L−i)

σ−1
σ

]
Lj

.

We therefore obtained:

Proposition. The changes in individual labor supplies are the solution to: for i ∈ {1, 2},

l̂i (θi)

li (θi)
= −εSr (θi, i)

T̂ ′(yi(θi))
1−T ′(yi(θi)) −εSw (θi, i)

ˆ ∞
0

γ
(

(θi, i) ,
(
θ̃i, i

)) l̂i (θ̃i)
li

(
θ̃i

)dθ̃i
+εSw (θi, i)

ˆ ∞
0

γ
(

(θi, i) ,
(
θ̃−i,−i

)) l̂−i (θ̃−i)
l−i

(
θ̃−i

)dθ̃−i.
This is a system of linear integral equations, which can be solved as in Section D.3.

Endogenous assignment

Suppose now that there is zero cost of switching sectors in response to tax reforms. We now need

to account for the endogenous responses of the thresholds θ∗2 (θ1) and θ∗1 (θ2). We now have

L̂1

L1
=

1

L1

ˆ ∞
0

θ1l1 (θ1)F2|1 (θ∗2 (θ1) | θ1) f1 (θ1)

[
l̂1 (θ1)

l1 (θ1)
+
θ∗2 (θ1) f2|1 (θ∗2 (θ1) | θ1)

F2|1 (θ∗2 (θ1) | θ1)

θ̂∗2 (θ1)

θ∗2 (θ1)

]
dθ1

L̂2

L2
=

1

L2

ˆ ∞
0

θ2l2 (θ2)F1|2 (θ∗1 (θ2) | θ2) f2 (θ2)

[
l̂2 (θ2)

l2 (θ2)
+
θ∗1 (θ2) f1|2 (θ∗1 (θ2) | θ2)

F1|2 (θ∗1 (θ2) | θ2)

θ̂∗1 (θ2)

θ∗1 (θ2)

]
dθ2.

We show the following result:

Lemma. The change in the threshold of types θ∗2 (θ1) in response to a tax reform are given by:

θ̂∗2 (θ1)

θ∗2 (θ1)
=

1

εSw (θ1, 1)

[
l̂1 (θ1)

l1 (θ1)
− l̂2 (θ∗2 (θ1))

l2 (θ∗2 (θ1))

]
. (79)
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Proof of equation (79). By expression (75), it is easy to show that we have

θ̂∗2 (θ1)

θ∗2 (θ1)
=

ŵ1 (θ1)

w1 (θ1)
− ŵ2 (θ∗2 (θ1))

w2 (θ∗2 (θ1))
. (80)

where for any θ2, ŵ2 (θ2) denotes the change in the wage of the �xed type θ2 in sector 2. But now

recall that

ŵi (θi)

wi (θi)
=

1

εSw (θi, i)

l̂i (θi)

li (θi)
+
εSr (θi, i)

εSw (θi, i)

T̂ ′ (yi (θi))

1− T ′ (yi (θi))

Using the results of the above Lemma (derived in Section D.4.2), this �nally implies that

θ̂∗2 (θ1)

θ∗2 (θ1)
=

1

εSw (θ1, 1)

[
l̂1 (θ1)

l1 (θ1)
− l̂2 (θ∗2 (θ1))

l2 (θ∗2 (θ1))

]
.

Similarly, we have

θ̂∗1 (θ2)

θ∗1 (θ2)
=

1

εSw (θ2, 2)

[
l̂2 (θ2)

l2 (θ2)
− l̂1 (θ∗1 (θ2))

l1 (θ∗1 (θ2))

]
.

This result crucially used the fact that the initially-marginal agent earns the same wage in both

sectors, and hence chooses the same labor supply, pays the same taxes and has the same labor

supply elasticities, so that, in particular,
εSr (θi,i)
εSw(θi,i)

T̂ ′(yi(θi))
1−T ′(yi(θi)) is the same in both sectors for this

agent.

We �nally show that this leads to:

Proposition. The changes in individual wages are given by:

ŵi (θi)

wi (θi)
= −

ˆ ∞
0

γ
(

(θi, i) ,
(
θ̃i, i

)) l̂i (θ̃i)
li

(
θ̃i

)dθ̃i +

ˆ ∞
0

γ
(

(θi, i) ,
(
θ̃−i,−i

)) l̂−i (θ̃−i)
l−i

(
θ̃−i

)dθ̃−i(81)
where the variables γ

(
(θ, i) ,

(
θ̃, j
))

are de�ned below.

Proof of equation (81). The previous Lemma implies

L̂1

L1
=

1

L1

ˆ ∞
0

θ1l1 (θ1)F2|1 (θ∗2 (θ1) | θ1) f1 (θ1) dθ1

×

[(
1 +

θ∗2 (θ1) f2|1 (θ∗2 (θ1) | θ1)

εSw (θ1, 1)F2|1 (θ∗2 (θ1) | θ1)

)
l̂1 (θ1)

l1 (θ1)
−
(

θ∗2 (θ1) f2|1 (θ∗2 (θ1) | θ1)

εSw (θ1, 1)F2|1 (θ∗2 (θ1) | θ1)

)
l̂2 (θ∗2 (θ1))

l2 (θ∗2 (θ1))

]
L̂2

L2
=

1

L2

ˆ ∞
0

θ2l2 (θ2)F1|2 (θ∗1 (θ2) | θ2) f2 (θ2) dθ2

×

[(
1 +

θ∗1 (θ2) f1|2 (θ∗1 (θ2) | θ2)

εSw (θ2, 2)F1|2 (θ∗1 (θ2) | θ2)

)
l̂2 (θ2)

l2 (θ2)
−
(

θ∗1 (θ2) f1|2 (θ∗1 (θ2) | θ2)

εSw (θ2, 2)F1|2 (θ∗1 (θ2) | θ2)

)
l̂1 (θ∗1 (θ2))

l1 (θ∗1 (θ2))

]
.
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A change of variables (using the Lemma derived in Section D.4.2) easily leads to (81), where the

cross-wage elasticities are now de�ned by

γ
(

(θi, i) ,
(
θ̃j , j

))

=
θ̃j lj

(
θ̃j

)
F−j|j

(
θ∗−j

(
θ̃j

)
| θ̃j
)
fj

(
θ̃j

)
σ
[
1 + (Li/L−i)

σ−1
σ

]
Lj

1 +
θ∗−j

(
θ̃j

)
f−j|j

(
θ∗−j

(
θ̃j

)
| θ̃j
)

εSw

(
θ̃j , j

)
F−j|j

(
θ∗−j

(
θ̃j

)
| θ̃j
)
+

θ∗−j

(
θ̃j

)
l−j

(
θ∗−j

(
θ̃j

))
Fj|−j

(
θ̃j | θ∗−j

(
θ̃j

))
fj

(
θ̃j

)
σ
[
1 + (Li/L−i)

σ−1
σ

]
L−j

 θ̃jfj|−j

(
θ̃j | θ∗−j

(
θ̃j

))
εSw

(
θ∗−j

(
θ̃j

)
,−j

)
Fj|−j

(
θ̃i | θ∗−j

(
θ̃j

))
 .

This concludes the proof.

Equation (81) is formally identical (78). Everything else therefore goes through exactly as in

the model with exogenous assignment, with these new de�nitions of the cross-wage elasticities.

D.4.4 General Roy model

The results of the previous section clearly do not depend on the assumptions that the utility is

quasilinear or that the production function is CES. More importantly, consider the general Roy

model with 3 sectors � the extension to N sectors will then be immediate. Consider an individual

of type (θ1, θ2, θ3), and de�ne the three value functions Vi(θi) as in Section D.4.2. Generally an

agent will work in the sector that gives him the highest wage. It is straightforward to show that for

each θ1, there are unique thresholds θ
∗
i (θi) for i ∈ {1, 2} at which an agent with sector-1 type θ1 is

indi�erent between working in sector 1 and sector i, that is, V1(θ1) = Vi(θ
∗
i (θ1)). Speci�cally, these

thresholds are given by θ∗i (θ1) = θ1
F ′1(L1,L2)
F ′2(L1,L2) . Similarly, for each (θ1, θ2) with θ2 > θ∗2(θ1), there is

a threshold θ∗3(θ2) such that agents work in sector 2 (resp., sector 3) if their sector-3 type θ3 is lower

(resp., higher) than θ∗3(θ2). We thus obtain that the population with sector-1 type θ1 is split in the

three sectors as follows:

• agents (θ1, θ2, θ3) with θ2 < θ∗2(θ1) and θ3 < θ∗3(θ1) work in sector 1;

• agents (θ1, θ2, θ3) with θ2 > θ∗2(θ1) and θ3 < θ∗3(θ2) work in sector 2;

• agents (θ1, θ2, θ3) with θ2 > θ∗2(θ1) and θ3 < θ∗3(θ2) work in sector 3;

• agents (θ1, θ2, θ3) with θ2 < θ∗2(θ1) and θ3 > θ∗3(θ1) work in sector 3.

The marginal agents that are initially indi�erent between two sectors earn the same wage in both

sectors. The agents who are indi�erent between all three sectors in the initial equilibrium are no

problem since there is only a second-order measure of them. The rest of our analysis in the case of

two sectors goes through.
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E Optimal taxation

In this section, we solve the the government's optimal taxation problem to maximize a Bergson-

Samuelson social welfare objective, subject to a resource constraint and the condition that wages

and labor supply form an equilibrium:

max
T (·)

ˆ
Θ

G [y (θ)− T (y (θ))− v (l (θ))] f (θ) dθ (82)

s.t.

ˆ
Θ

[y (θ)− T (y (θ))] f (θ) dθ ≤ F (L ) (83)

and (1) , (2) , and y (θ) = w (θ) l (θ) . (84)

We propose several equivalent ways to solve this problem. First, in Section E.1 we show that the

solution to this problem can be obtained as a by-product of our tax incidence analysis. In Section

E.1.2, we show how the formula simpli�es in the case of a CES production function, which leads to

a proof of Proposition 3. In Section E.1.3 we prove the top tax formula of Corollary 5. In Section

E.1.4 we further characterize the U-shape of the optimal marginal tax rates.

Next, we develop alternative derivations of the optimal tax schedule. In Section E.2, we derive

the optimum formula using a novel tax reform approach. Finally, in Section E.3 we derive the

optimal tax formula with the more traditional mechanism design approach.

E.1 Deriving optimal taxes from the tax incidence analysis

E.1.1 General production function

By imposing that the social welfare e�ects of any tax reform of the initial tax schedule T are equal

to zero, our tax incidence analysis immediately delivers a characterization of the optimum tax rates.

In the model with exogenous wages (Diamond, 1998), the optimum schedule T ′pe (·) is characterized
by

T ′pe (y∗)

1− T ′pe (y∗)
=

1

εSr (y∗)
(1− ḡ (y∗))

1− FY (y∗)

y∗fY (y∗)
.

The tax rate at income y∗, T ′pe (y∗), is decreasing in the labor supply elasticity, the average social

marginal welfare weight above income y∗, and the hazard rate of the income distribution. In the

general-equilibrium model, we obtain instead:

Corollary 7. The welfare-maximizing tax schedule T satis�es: for all y∗ ∈ R+,

T ′ (y∗)

1− T ′
pe

(y∗)
=

1

εSr (y∗)

1− FY (y∗)

y∗fY (y∗)

{
1− ḡ (y∗) + εr (y∗) . . .

×
ˆ
R+

[ψ (y∗)− ψ (y)]
Γ (y, y∗)

1 +
εSr (y∗)
εDr (y∗)

yfY (y)

1− FY (y∗)
dy

}
,

(85)

where ψ (·) is de�ned by (55). Moreover, this optimal tax formula (85) can be expressed as an integral

equation in T ′ (·), which can then be solved using analogous techniques as in Section 2.1.
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Note that in equation (85), the variables εSr (y∗), ḡ (y∗), and 1−FY (y∗)
y∗fY (y∗) that appear in T ′pe (y∗)

are evaluated in an economy where the general-equilibrium optimum tax schedule T (and not the

exogenous-wage optimum T ′pe) is implemented.

Proof of Corollary 7.
Formula (85). The impact of the elementary tax reforms on social welfare is given by (51)

with

ŵ (y)

w (y)
= (1− FY (y∗))

−1 1

εSw (y)
[
(
εSr (y)− εr (y)

) δ (y − y∗)
1− T ′ (y)

− εw (y) Γ (y, y∗) εr (y∗)

1− T ′ (y∗)
].

This implies

Ŵ (y∗) =

ˆ ∞
y∗

(1− g (y))
fY (y)

1− FY (y∗)
dy − T ′ (y∗)

1− T ′ (y∗)
εSr (y∗)

y∗fY (y∗)

1− FY (y∗)

+
εr (y∗)

1− T ′ (y∗)
y∗fY (y∗)

1− FY (y∗)

[(
1 + εSw (y∗)

)
T ′ (y∗) + (1− T ′ (y∗)) g (y∗)

] 1

εDw (y)

− εr (y∗)

1− T ′ (y∗)
y∗fY (y∗)

1− FY (y∗)

ˆ [(
1 + εSw (y)

)
T ′ (y) + (1− T ′ (y)) g (y)

] Γ (y, y∗)

1 +
εSw(y)
εDw (y)

ydFY (y)

y∗fY (y∗)
.

Using Euler's theorem (25) to substitute for 1
εDw (y)

in the second line, imposing Ŵ (y∗) = 0 for all y∗

and rearranging the terms leads to

T ′ (y∗)

1− T ′ (y∗)
=

1

εSr (y∗)
(1− ḡ (y))

1− FY (y∗)

y∗fY (y∗)

+
εr (y∗)

εSr (y∗)

1

1− T ′ (y∗)

ˆ
R+

[ψ (y∗)− ψ (y)]
Γ (y, y∗)

1 +
εSw(y)
εDw (y)

yfY (y)

y∗fY (y∗)
dy.,

where ψ (y) =
(
1 + εSw (y)

)
T ′ (y) + g (y) (1− T ′ (y)). Multiplying this equation by 1 − T ′ (y∗) and

solving for T ′ (y∗) easily leads to equation (85).

Integral equation formulation. We can rewrite the optimal tax formula (85) as

T ′ (y∗) =
1

A (y∗)

T ′pe (y∗)

1− T ′pe (y∗)
+

1

A (y∗)

εr (y∗)

εSr (y∗)

ˆ
(g (y∗)− g (y))

Γ (y, y∗)

1 +
εSw(y)
εDw (y)

yfY (y)

y∗fY (y∗)
dy

− 1

A (y∗)

εr (y∗)

εSr (y∗)

ˆ (
1− g (y) + εSw (y)

) Γ (y, y∗)

1 +
εSw(y)
εDw (y)

yfY (y)

y∗fY (y∗)
T ′ (y) dy

where

A (y∗) ≡ 1

1− T ′ex (y∗)
− εr (y∗)

εSr (y∗)

(
1− g (y∗) + εSw (y∗)

)ˆ Γ (y, y∗)

1 +
εSw(y)
εDw (y)

yfY (y)

y∗fY (y∗)
dy.

This is a linear Fredholm integral equation in T ′ (·) that can be solved using the same techniques as

in Section 2.1.
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E.1.2 CES production function

Proof of Proposition 3. If the production function is CES, we have εDw (y) = σ and Γ (y, y∗) =
y∗fY (y∗)

σE[(1+ 1
σ ε
S
w(x))−1x]

. Using these expressions, formula (85) can then be rewritten as

[1 +
1

σ
(g (y∗)− 1)]T ′ (y∗) =T (y∗) (1− T ′ (y∗)) +

1

σ
g (y∗)− A

σ
,

where

T (y∗) ≡ 1

εr (y∗)
(1− ḡ (y∗))

1− FY (y∗)

y∗fY (y∗)

denote the optimal tax formula for T ′(y∗)
1−T ′(y∗) in the partial-equilibrium model, and

A ≡ 1

E[ y
1+ 1

σ ε
S
w(y)

]

ˆ
g (y) +

[
(1− g (y)) + εSw (y)

]
T ′ (y)

1 + 1
σ ε

S
w (y)

yfY (y) dy. (86)

Note that A is a constant, as it does not depend on y∗. The previous equation can then be rewritten

as

T ′ (y∗) =
T (y∗) + 1

σ (g (y∗)−A)

1 + T (y∗) + 1
σ (g (y∗)− 1)

(87)

We now show that A = 1, so that we get expression (22), i.e., T ′(y∗)
1−T ′(y∗) = T (y∗)+ 1

σ (g (y∗)− 1).

(Note that equation (86)-(87) is an integral equation in T ′ (y∗). Moreover, its kernel is separable in

(y∗, y), since A does not depend on y∗. We can thus easily solve it following the same steps as in

the proof of equation (13).) Consider the following tax reform:

T̂2 (y) = − εr (y∗)

1− T ′ (y∗)
γ (y, y∗) (1− T ′ (y)) y,

T̂ ′2 (y) = − εr (y∗)

1− T ′ (y∗)
γ (y, y∗) (1− T ′ (y)− yT ′′ (y)) ,

where γ (y, y∗) = 1
σ

y∗fY (y∗)´
xfY (x)dx

is independent of y since the production function is CES. As we show

below (Section E.2), this tax reform is the one that cancels out the general equilibrium e�ects on

individual labor supply of the elementary reform at y∗. Tedious but straightforward algebra shows

that the incidence of this counteracting tax reform T̂2 on social welfare is given by

Ŵ(T̂2) =

ˆ
Ŵ (y∗) T̂ ′2 (y∗) (1− FY (y∗)) dy∗

=− 1

σ

εr (y∗)

1− T ′ (y∗)
y∗fY (y∗)´
xfY (x) dx

{ˆ
(1− g (y)) (1− T ′ (y)) yfY (y) dy . . .

−
ˆ
εw (y)

([
1 +

1

σ
(g (y)− 1)

]
T ′ (y)− 1

σ
g (y)

)
yfY (y) dy

− 1

σ

´
εw (y) ydFY (y)

E
[

x
1+ 1

σ ε
S
w(x)

] ˆ
1

1 + 1
σ ε

S
w (x)

[(
1− g (x) + εSw (x)

)
T ′ (x) + g (x)

]
xdFY (x)

}
.
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Using expression (86) for the constant A implies

Ŵ(T̂2) =− 1

σ

εr (y∗)

1− T ′ (y∗)
y∗fY (y∗)´
xfY (x) dx

{ˆ
(1− g (y)) + 1−A

σ εSw (y)

1 + 1
σ ε

S
w (y)

yfY (y) dy

−
ˆ

(1− g (y)) + εSw (y)

1 + 1
σ ε

S
w (y)

T ′ (y) yfY (y) dy

}
.

This expression must be equal to zero for the tax schedule to be optimal, so

ˆ
(1− g (y)) + εSw (y)

1 + 1
σ ε

S
w (y)

T ′ (y) yfY (y) dy =

ˆ
(1− g (y)) + 1−A

σ εSw (y)

1 + 1
σ ε

S
w (y)

yfY (y) dy. (88)

Using the solution (87) for the optimal tax schedule and solving for A yields

A

σ
=

´ (1−g(y))+ 1
σ ε
S
w(y)

1+ 1
σ ε
S
w(y)

yfY (y) dy −
´ (1−g(y))+εSw(y)

1+ 1
σ ε
S
w(y)

T (y)+ 1
σ g(y)

1+T (y)+ 1
σ (g(y)−1)

yfY (y) dy
´ εSw(y)

1+ 1
σ ε
S
w(y)

yfY (y) dy −
´ (1−g(y))+εSw(y)

1+ 1
σ ε
S
w(y)

1
1+T (y)+ 1

σ (g(y)−1)
yfY (y) dy

.

Now compare expressions (86) and (88). These two equations imply

ˆ [
(1− g (y)) + εSw (y)

]
T ′ (y)

1 + 1
σ ε

S
w (y)

yfY (y) dy = AE
[

1− g (y)

1 + 1
σ ε

S
w (y)

y

]
=

ˆ
(1− g (y)) + 1−A

σ εSw (y)

1 + 1
σ ε

S
w (y)

yfY (y) dy.

Solving for A easily implies A = 1. This concludes the proof.

E.1.3 Optimal top tax rate

Proof of Corollary 5. Suppose that the disutility of labor is isoelastic with parameter e, and

that the aggregate production function is CES. Assume that in the data (i.e., given the current

tax schedule with a constant top tax rate), the income distribution has a Pareto tail, so that the

(observed) hazard rate
1−FŶ (y∗)

yfŶ (y∗) converges to a constant. We show that under these assumptions,

the income distribution at the optimum tax schedule is also Pareto distributed at the tail with the

same Pareto coe�cient. That is, the hazard rate of the income distribution at the top is independent

of the level of the top tax rate. At the optimum, we have

1− FY (y(θ))

y(θ)fY (y(θ))
=

1− F (θ)
y(θ)
y′(θ)f(θ)

=
1− F (θ)

θf(θ)

θy′(θ)

y(θ)
=

1− F (θ)

θf(θ)
εy,θ, (89)

where we de�ne the income elasticity εy,θ ≡ d ln y (θ) /d ln θ. To compute this elasticity, use the

individual �rst order condition (1) with isoelastic disutility of labor to get l(θ) = r(θ)ew(θ)e, where
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r(θ) is agent θ's retention rate. Thus we have

εl,θ ≡
d ln l (θ)

d ln θ
=e

d ln r(θ)

d ln θ
+ e

d lnw(θ)

d ln θ
.

But since the production function is CES, we have shown above that

d lnw(θ)

d ln θ
=
d ln a (θ)

d ln θ
− 1

σ

d lnL (θ)

d ln θ

=
d ln a (θ)

d ln θ
− 1

σ

d ln l (θ)

d ln θ
− 1

σ

d ln f (θ)

d ln θ
=
θa′ (θ)

a (θ)
− 1

σ
εl,θ −

1

σ

θf ′ (θ)

f (θ)
.

Thus, substituting this expression for θw′(θ)
w(θ) in the previous equation, we obtain

εl,θ =e

[
θa′ (θ)

a (θ)
− 1

σ
εl,θ −

1

σ

θf ′ (θ)

f (θ)
+
θr′(θ)

r(θ)

]
.

Moreover, since we assume that the second derivative of the optimal marginal tax rate, T ′′ (y),

converges to zero for high incomes, we have limθ→∞ r′(θ) = 1. Therefore, the previous equation

yields

lim
θ→∞

εl,θ =
e

1 + e
σ

[
lim
θ→∞

θa′ (θ)

a (θ)
− 1

σ
lim
θ→∞

θf ′ (θ)

f (θ)

]
.

Note that the variables θa′(θ)
a(θ) and θf ′(θ)

f(θ) are primitive parameters that do not depend on the tax

rate. Assuming that they converge to constants as θ →∞, we obtain that limθ→∞ εl,θ is a constant

independent of the tax rates, and hence

εy,θ = εl,θ + εw,θ =

(
1 +

1

e

)
εl,θ

converges to a constant independent of the tax rate as θ → ∞. Therefore, the hazard rate of the

income distribution at the optimum tax schedule, given by (89), converges to the same constant 1/ρ

as the hazard rate of incomes observed in the data.

Now let y∗ → ∞ in equation (22), to obtain an expression for the optimal top tax rate τ∗ =

limy∗→∞ T ′ (y∗). Since the production function is CES, the disutility of labor is isoelastic, and the

top tax rate is constant, we have seen that

lim
y∗→∞

εr (y∗) =
e

1 + e/σ
.

Furthermore assume that limy∗→∞ g (y∗) = ḡ, so that limy∗→∞ ḡ (y∗) = ḡ. Therefore (22) implies

τ∗

1− τ∗
=

1 + e/σ

e
(1− ḡ)

1

Π
+
ḡ − 1

σ
=

1− ḡ
Πe

+
1− ḡ
Πσ

+
ḡ − 1

σ
,

where π is the Pareto parameter of the tail of the income distribution. Solving for τ∗ leads to

equation (23) and concludes the proof.
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Figure 4: Optimal top tax rate as a function of the labor supply elasticity e (left panel, σ = 3.1

�xed) and the elasticity of substitution σ (right panel, e = 0.33 �xed) and for varying Pareto

parameters Π.

Figure 4 shows the comparative statics implied by formula (23). (See also Green and Phillips

(2015) who study quantitatively the size of the optimal top tax rate in a two-sector model.)

E.1.4 Additional results: U-shape of the optimum tax schedule

In this section we analyze the impact of general equilibrium on the shape of optimal tax rates.

Suppose for simplicity that the social planner is Rawlsian, i.e., it maximizes the lump-sum component

of the tax schedule, so that g (y) = 0 for all y > 0. Thus, if the income of the lowest type is positive,

we assume that there are some additional agents in the economy who are unable to work and whose

consumption equals the demogrant. The partial-equilibrium equivalent of formula (22) for optimal

taxes (for which the second term on the right hand side is equal to zero) generally implies a U-

shaped pattern of marginal tax rates (Diamond, 1998; Saez, 2001) because the hazard rate 1−FY (y)
yfY (y)

is a U-shaped function of income y.

If this is the case, then the additional term −1/σ < 0 in (22) leads to a general equilibrium

correction for T ′ (·) that is also U-shaped, because the optimal marginal tax rate T ′ (y∗) is increasing

and concave in the right hand side of (22). That is, if the function h(y)
1+h(y) with h (y) = 1

εr(y)
1−FY (y)
yfY (y)

is U-shaped, it is easy to check that the general-equilibrium correction to marginal tax rates y 7→
h(y)−σ−1

1+h(y)−σ−1 − h(y)
1+h(y) is then also U-shaped. This suggests that the general equilibrium forces tend

to reinforce the U-shape of the optimum tax schedule.

To formalize this intuition using our tax incidence analysis of Section 3, we start by de�ning

a benchmark optimal tax schedule with exogenous wages, to which we can compare our general-

equilibrium formula.

De�ning a benchmark with exogenous wages. First, we de�ne the marginal tax rates that

a partial-equilibrium planner would set from Diamond (1998) using the same data to calibrate the
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model, and making the same assumptions about the utility function, but wrongly assuming that the

wage distribution is exogenous:

T ′ex (y (θ))

1− T ′ex (y (θ))
=

(
1 +

1

εSr (ŵ(θ))

)
1− FŴ (ŵ(θ))

fŴ (ŵ(θ))ŵ(θ)
, (90)

where ŵ(θ) are the wages inferred from the data, i.e., obtained from the incomes observed empirically

and the �rst-order conditions (1), and FŴ is the corresponding wage distribution. Formula (90) is

the benchmark to which we compare our optimal policy results numerically, thus directly highlighting

how our policy implications di�er from those of Diamond (1998).

A government that would implement this tax formula, however, would then observe that the

implied distribution of wages does change and is not consistent with the optimality of the tax

schedule (90). To overcome this inconsistency, we consider a self-con�rming policy equilibrium

(SCPE) T ′scpe (y (θ)), as originally proposed by Rothschild and Scheuer (2013, 2016), which is such

that implementing the tax schedule (90) generates a wage distribution given which these tax rates are

optimal � in other words, this construction solves for the �xed point between the wage distribution

and the tax schedule. We use this concept as our exogenous-wage benchmark for our theoretical

analysis below.

Comparing optimal taxes to those obtained with exogenous wages. We can apply our

tax incidence result of Proposition 2 using the SCPE tax schedule as our initial tax schedule. This

exercise gives the (�rst-order) welfare gains of reforming this tax schedule at any income level,

and hence the shape of the general-equilibrium correction to the optimal policy obtained assuming

exogenous wages.

Corollary 8. Suppose that the production function is Cobb-Douglas (σ = 1), that the initial tax

schedule T = Tscpe is the SCPE, and that the disutility of labor is isoelastic with parameter e. The

incidence of the elementary tax reform at income y∗ on government revenue (or Rawlsian welfare)

is given by

R̂scpe (y∗) = 1− ζ 1

T ′ (y∗)

[
p(y∗) +

1

e

]
, (91)

where ζ−1 ≡ 1
T̄ ′

[p̄+ 1
e ] > 0 is a constant that depends on the income-weighted averages of the marginal

tax rate T̄ ′ = E[ yEyT
′ (y)] and of the local rate of progressivity p̄ = E[ yEyp (y)] in the initial economy.

Proof of Corollary 8. The revenue e�ects of elementary tax reforms are given by Proposition 2.

Now assume that our starting tax schedule is a self-con�rming policy equilibrium that implies an

income distribution fY (y). Then we know that this initial tax schedule satis�es

T ′scpe (y (θ))

1− T ′scpe (y (θ))
=

1

εSr (y(θ))

1− FY (y(θ))

fY (y(θ))y(θ)
. (92)

This implies that the incidence on government revenue in the model with exogenous wages is equal

to R̂ex (y∗) = 0 if the initial tax schedule is the SCPE. Moreover, equations (13) and (41) imply
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that
´
R+

Γ(y,y∗)

1+ 1
σ ε
S
w(y)

yfY (y)
y∗fY (y∗)dy = 1

σ . Thus, with endogenous wages, we obtain

R̂ (y∗) = εr (y∗)
T ′scpe (y∗)

1− T ′scpe (y∗)

y∗fY (y∗)

1− FY (y∗)

(
1 + εSw(y∗)

) 1

σ

− εr (y∗)
1

1− T ′scpe (y∗)

y∗fY (y∗)

1− FY (y∗)

ˆ
R+

[
T ′scpe (y)

(
1 + εSw (y)

)] Γ (y, y∗)

1 + 1
σ ε

S
w (y)

yfY (y)

y∗fY (y∗)
dy.

Now we can use the property (92) of T ′scpe to obtain

R̂ (y∗) =
1 + εSw(y∗)

σ + εSw(y∗)

1− 1

σ + εSw(y∗)

1

1− 1
σE[ yEy εw (y)]

´
R+
T ′scpe (y)

1+εSw(y)
σ+εSw(y)

yfY (y) dy

T ′scpe (y∗)
1+εSw(y∗)
σ+εSw(y∗)

Ey

 .
Assume further that σ = 1, i.e. that the production function is Cobb-Douglas. We get

R̂ (y∗) =1− 1

1 + εSw(y∗)

1

1− E[ yEy εw (y)]

ˆ
R+

T ′scpe (y)

T ′scpe (y∗)

y

Ey
fY (y) dy.

Letting T̄ ′scpe =
´
R+

y
EyT

′
scpe (y) fY (y) dy and ε̄w = E[ yEy εw (y)] denote the income-weighted average

marginal tax rate and labor supply elasticity, and recalling that εw (y) = (1−p(y))e
1+p(y)e , we can rewrite

the previous expression as

R̂ (y∗) =1−
p (y∗) + 1

e

1 + 1
e

1

1− ε̄w
T̄ ′scpe

T ′scpe (y∗)
≡ 1−

p (y∗) + 1
e

T ′scpe (y∗)
ζ,

where ζ =
T̄ ′
scpe

(1+ 1
e )(1−ε̄w)

. Now note that the elasticity εr (y) =
εSr (y)

1+ 1
σ (1−p(y))εSr (y)

= e
1+e is constant.

Therefore we can rewrite ζ as ζ =
T̄ ′
scpe

1
e+E[ yEy p(y)]

.

The map y∗ 7→ R̂scpe (y∗) in (91) gives the shape of the general-equilibrium correction to the

optimal tax schedule obtained assuming exogenous wages. Importantly, just as the result of Corol-

lary 4, formula (91) shows that the general-equilibrium e�ects of the tax reform have a shape that

is inherited from that of the initial tax schedule. In particular, if the marginal tax rates T ′ (y∗) of

the SCPE are U-shaped as a function of income, the term −1/T ′ (y∗) in equation (91) leads to a

general-equilibrium correction that is itself U-shaped. Note, however, that the additional term in

general equilibrium depends also on the rate of progressivity p (y∗) of the initial (SCPE) tax sched-

ule. Nevertheless, since
∣∣p (y∗)

∣∣ < 1 � 1
e ≈ 3 (Chetty (2012)), the shape of R̂ (y∗) as a function of

y∗ is mostly driven by the term −1/T ′ (y∗). Our numerical simulations below con�rm this intuition.

E.2 Alternative derivation I: counteracting perturbation

E.2.1 Heuristic derivation

Consider as in Section 3 an elementary tax reform at income y∗, i.e., T̂1 (y) = I{y≥y∗} and T̂ ′1 (y) =
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δ (y − y∗), that consists of an increase in the marginal tax rate at income level y∗ and hence an

increase in the tax payment of incomes y ≥ y∗ by a uniform lump-sum amount. Denote by θ∗ the

type that earns y (θ∗) = y∗ in the initial equilibrium.

Mechanical e�ect. First, as in Saez (2001), this tax reform implies a mechanical e�ectM1(y∗)

which captures the direct welfare consequences of the higher tax bill faced by individuals with incomes

above y∗, absent any behavioral responses. There is a fraction 1 − FY (y∗)) of such agents, who all

pay an additional unit of income in taxes. The corresponding increase in revenue from individual

with income y is only valued (1− g(y)) by the government, by de�nition of the marginal social

welfare weight g (y). We therefore obtain

M1(y∗) = (1− ḡ(y∗)) (1− FY (y∗))) , (93)

where ḡ(y∗) =
´∞
y∗
g(y) fY (y)

1−FY (y∗))dy denotes the average welfare weight above income y∗.

Behavioral e�ect. Second, individuals with income y∗ reduce their labor supply as a response

to their higher marginal tax rate, by an amount proportional to the elasticity εr (y∗). Since a share

T ′(y∗) of the corresponding income change accrues to the government, and there are fY (y∗) such

agents, this has an impact on government revenue given by

B(y∗) = − T ′(y∗)

1− T ′ (y∗)
εr (y∗) y∗fY (y∗). (94)

This term is the same as the behavioral e�ect in Saez (2001), except that the relevant labor supply

elasticity is εr(y
∗) rather than εSr (y∗) � it now accounts for the decreasing marginal product labor

of agent y∗, i.e., the endogeneity of w(θ∗) due to the own-wage e�ect. Note that the change in

labor supply of agents of type θ∗ has no �rst-order impact on their utility, because of the envelope

theorem.

Own-wage general-equilibrium e�ect. Third, the increase in the wage of individuals θ∗

due to their own labor supply reduction has a �rst-order positive impact on both government revenue

and individual utility (see equations (16) and (15)). This own-wage general-equilibrium e�ect is given

by

GE1(y∗) = [T ′(y∗) + g(y∗)(1− T ′(y∗))] y∗ 1

εDw (y∗)

εr (y∗)

1− T ′(y∗)
. (95)

The change in labor supply implies a percentage increase of the wage by 1
εDw (y∗)

εr(y∗)
1−T ′(y∗) . A share

T ′(y∗) of the implied income change accrues to the government, while the share 1−T ′(y∗) translates
into consumption, which is valued by the planner by the amount g(y∗), by de�nition of the social

marginal welfare weight.

Accounting for the cross-wage e�ects. Fourth, the tax reform impacts wages (and hence

government revenue and individual utilities) through cross-wage e�ects. Fully accounting for the
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cross-wage e�ects would imply, as we analyzed in Section , solving an integral equation. Here we

follow a di�erent route and design a second tax reform τ2 such that the labor supply of all individuals

θ 6= θ∗ remains constant in response to the combination of the two perturbations T̂1 + T̂2, therefore

avoiding the need to carry around the integral term in equation (9) (and hence (10)).

The tax reform T̂1 induces a direct adjustment in the wage of type θ 6= θ∗ equal to

ŵ (θ)

w (θ)
= −γ(y (θ) , y∗)

εr (y∗)

1− T ′(y∗)
(96)

To keep the labor supply of agent θ �xed, the net-of-tax wage rate (1− T ′ (y (θ)))w (θ) must remain

unchanged, i.e., the tax change at income y (θ) exactly compensates the wage change of agent θ:

d ln (1− T ′ (y (θ))) = − ŵ (θ)

w (θ)
(97)

Note that the right-hand side of this expression (given by formula (96)) only accounts for the �rst-

round of cross-wage e�ects, since it features the structural elasticity γ (y (θ) , y∗) rather than the

aggregate elasticity Γ (y (θ) , y∗). This is because, by construction, the combination of tax reforms

T̂1 + T̂2 leaves labor supplies �xed, so that there will be no further rounds of cross-wage e�ects �

therefore the right-hand side of (97) e�ectively captures the full adjustment in w (θ).

We now derive the tax reform T̂2 that ensures that equation (97) is satis�ed. If the initial tax

schedule T were linear, the tax reform T̂2 would impact the retention rate at income y (θ) simply

by −T̂ ′2 (y (θ)), so that (97) would require a counteracting change in the marginal tax rate of the

same magnitude (in percentage terms) as the wage adjustment, i.e.
T̂ ′2(y(θ))

1−T ′(y(θ)) = ŵ(θ)
w(θ) . Instead, for a

nonlinear tax schedule, the change in income induced by the perturbation T̂2 also triggers an indirect

endogenous marginal tax rate adjustment. The relation between d ln (1− T ′) and T̂ ′2 is thus given

by

d ln (1− T ′ (y (θ))) = −
T̂ ′2 (y (θ)) + T ′′ (y (θ)) l (θ) ŵ(θ)

w(θ)

1− T ′ (y (θ))
. (98)

Equations (96), (97) and (98) then imply that the counteracting perturbation is given by:

T̂ ′2 (y) = − εr (y∗)

1− T ′ (y∗)
(1− T ′ (y)− yT ′′ (y)) γ (y, y∗) . (99)

(Note that this counteracting tax perturbation is able to undo all of the general equilibrium e�ects on

labor supply thanks to the assumption that agents who earn the same income y have the same wage

and identical cross-wage elasticities γ (y, y∗). In a model with multidimensional heterogeneity as in

Rothschild and Scheuer (2014), the perturbation T̂2 would not be a �exible enough tool to exactly

cancel out everyone's labor supply response to T̂1, as di�erent agents earning the same income would

have di�erent behavioral responses yet face the same tax change.)

We can now derive the revenue and welfare implications of (i) the wage adjustments (96), and

(ii) the (counteracting) tax reform (99).
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E�ect of the wage adjustments. The welfare impact of the cross-wage e�ects (96) is similar

to that of the own wage e�ect (95). Individuals of type θ lose a share 1− T ′ (y (θ)) of their income

change y (θ) ŵ(θ)
w(θ) , while the share T

′ (y (θ)) accrues to the government. The total impact on social

welfare is thus equal to

GE2(y∗) = − εr (y∗)

1− T ′ (y∗)

ˆ
R+

[T ′(y) + g (y) (1− T ′ (y))] γ (y, y∗) yfY (y) dy. (100)

E�ect of the counteracting tax reform. The counteracting tax changes (99) induce a

mechanical change in social welfare given by

M2(y∗) =

ˆ
R+

(1− ḡ(y)) T̂ ′2(y) (1− FY (y))) dy. (101)

This is because the compensating marginal tax rate decrease (say) at income y (θ), T̂ ′2 (y (θ)), uni-

formly decreases the tax bill of individuals with income above y (θ), which therefore lowers govern-

ment revenue by T̂ ′2 (y (θ)) (1− FY (y (θ))). This revenue gain is valued (1− ḡ (y (θ)))× T̂ ′2 (y (θ))×
(1− FY (y (θ))) by the planner. Summing over incomes y (θ) gives the change in social welfare from

the counteracting perturbation. Note that we do not have to consider the behavioral e�ects of this

counteracting tax reform since by construction it mutes the labor supply responses.

Taking stock. To sum up the reasoning: in response to a (say, higher) marginal tax rate, θ∗

decreases her labor supply, which a�ects (say, lowers) the wage of type θ. This wage e�ect directly

lowers government revenue. An equivalent reduction in the marginal tax rate at income y (θ) is

then necessary to cancel out the induced change in the labor supply of θ. However, due the limited

nature of the government's policy instrument, there is a key di�erence between the initial wage

adjustment and the counteracting tax change: the former impacts only the income of type θ, while

the latter impacts that of all individuals with skill higher than θ. Summing the e�ects of these two

perturbations on government revenue and social welfare immediately yields the general-equilibrium

correction GE2 +M2 to the optimal tax rates.

Optimal tax schedule. The optimal tax schedule is then described by

M1(y∗) +B(y∗) +GE1(y∗) +GE2(y∗) +M2(y∗) = 0

for all y∗ ∈ R+. Straightforward algebra (see below) leads to the following formula for optimal taxes:

T ′ (y∗)

1− T ′ (y∗)
=

1

εr (y∗)
(1− ḡ (y∗))

(
1− FY (y∗)

y∗fY (y∗)

)
+

1

εDw (y∗)
(g(y∗)− 1)

−
ˆ
R+

[
(1− ḡ (y))

(
1− FY (y)

y∗fY (y∗)

)(
1− T ′ (y)

1− T ′ (y∗)

)
y

]′
γ (y, y∗) dy.

(102)
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E.2.2 Rigorous derivation

Formal proof of equation (102).

Proof of equation (99). Consider the perturbation T̂1 de�ned by T̂1 (y) = I{y≥y∗} and

T̂ ′1 (y) = δ (y − y∗). As usual, denote by θ∗ the type such that y (θ∗) = y∗. We impose that T̂1 + T̂2

has the same e�ects on labor supply as those that T̂1 induces in the partial equilibrium framework.

The general equilibrium response to T̂1+T̂2 is given by the solution to the following integral equation:

for all θ ∈ Θ,

l̂(θ|T̂1 + T̂2)

l (θ)
=− εSr (θ)

1 + εSw (θ) /εDw (θ)

[
T̂ ′1 (y (θ)) + T̂ ′2 (y (θ))

1− T ′ (y (θ))

]

+
εSw (θ)

1 + εSw (θ) /εDw (θ)

ˆ
Θ

γ (θ, θ′)
l̂(θ′|T̂1 + T̂2)

l (θ′)
dθ′.

(103)

The e�ect of T̂1 in the model with exogenous wages, on the other hand, is given by: for all θ ∈ Θ,

l̂pe(θ|T̂1) =− εSr (θ)
T̂ ′1 (y (θ))

1− T ′ (y (θ))
= −εSr (θ)

δ (y (θ)− y∗)
1− T ′ (y (θ∗))

. (104)

In particular, note that with exogenous wages, we have l̂ex(θ|T̂1) = 0 for all θ 6= θ∗, i.e., the

only individuals who respond to a change in the marginal tax rate at income y∗ are those whose

type is θ∗ (and hence whose income is y∗). Substituting for (104) in the left hand side and under

the integral sign of (103) yields, after a change of variables in the integral (recall that γ (y, y′) =

(dydθ (θ′))−1γ (θ, θ′)),

T̂ ′2 (y (θ))

1− T ′ (y (θ))
=− 1

1− T ′ (y (θ∗))

εSw (θ) εSr (θ∗)

εSr (θ)

[
− 1

εDw (θ∗)
δ (y (θ)− y∗) + γ (y, y∗)

]
,

which easily leads to equation (99). Note that T̂ ′2 (y (θ)) is a smooth function, except for a jump

(formally, a Dirac term) at θ = θ∗, which adds to the jump in marginal tax rates de�ned by the tax

reform T̂1 at θ∗ so that the total response of labor supply of individuals with income y∗ is equal to

their response to T̂1 in the partial equilibrium environment. Now, integrate this expression from 0

to y (letting T̂2 (0) = 0) to get T̂2 (y):

T̂2 (y (θ)) = − εSr (θ∗)

1− T ′ (y (θ∗))

[
− 1

εDw (θ∗)
(1− T ′ (y∗)− y∗T ′′ (y∗)) I{y≥y∗}

+

ˆ y

0

(1− T ′ (y′)− y′T ′′ (y′)) γ (y′, y∗) dy′
]
.

Proof of equation (102). We now derive the e�ects of the combination of perturbations

T̂1 + T̂2 on social welfare. Tedious but straightforward algebra shows that this has the following �rst
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order e�ects on individual tax paments:

dT (y (θ)) = I{y(θ)≥y∗} −
T ′ (y (θ))

1− T ′ (y∗)
εSr (θ∗) y (θ) δ (y (θ)− y∗) . . .

− εSr (θ∗)

1− T ′ (y (θ∗))

{[
− 1

εDw (θ)
δ (y (θ)− y∗) + γ (y (θ) , y∗)

]
y (θ)T ′ (y (θ)) . . .

− (1− T ′ (y∗)− y∗T ′′ (y∗)) 1

εDw (y∗)
I{y(θ)≥y∗} +

ˆ y

0

(1− T ′ (y′)− y′T ′′ (y′)) γ (y′, y∗) dy′

}
,

and on aggregate tax payments:

R̂ =1− FY (y∗)− T ′ (y∗)

1− T ′ (y∗)
εSr (y∗) y∗fY (y∗)

+
εSr (y∗)

1− T ′ (y∗)
[T ′ (y∗) y∗fY (y∗) + (1− T ′ (y∗)− y∗T ′′ (y∗)) (1− FY (y∗))]

1

εDw (y∗)

− εSr (y∗)

1− T ′ (y∗)

ˆ
R+

[T ′ (y) yfY (y) + (1− T ′ (y)− yT ′′ (y)) (1− FY (y))] γ (y, y∗) dy.

where we used the fact that

ˆ ∞
y=0

ˆ y

y′=0

(1− T ′ (y′)− y′T ′′ (y′)) γ (y′, y∗) dy′fY (y) dy

=

ˆ ∞
y′=0

(1− T ′ (y′)− y′T ′′ (y′)) (1− FY (y′)) γ (y′, y∗) dy′.

Now, using Euler's homogeneous function theorem (24), we can rewrite this expression as

R̂ =1− FY (y∗)− T ′ (y∗)

1− T ′ (y∗)
εSr (y∗) y∗fY (y∗)

+
εSr (y∗)

1− T ′ (y∗)

[
A′ (y∗)

1

εDw (y∗)
−
ˆ
R+

A′ (y) γ (y, y∗) dy

]
,

where
A′ (y) ≡ [(1− T ′ (y)) y (1− FY (y))]

′

=− (1− T ′ (y)) yfY (y) + (1− T ′ (y)− yT ′′ (y)) (1− FY (y)) .

Alternatively, we could also write

R̂ =1− FY (y∗)− T ′ (y∗)

1− T ′ (y∗)
εSr (y∗) y∗fY (y∗)

+
εSr (y∗)

1− T ′ (y∗)
y∗fY (y∗)

ˆ
R+

[B (y∗)−B (y)] γ (y, y∗)
yfY (y)

y∗fY (y∗)
dy,

where

B (y) = T ′ (y) + (1− T ′ (y)) (1− p (y))
1− FY (y)

yfY (y)
.
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Next, we derive the e�ect of the perturbation T̂ = T̂1 + T̂2 on individual welfare:

Û (θ) =− I{y(θ)≥y∗} −
εSr (θ∗)

1− T ′ (y∗)

{
(1− T ′ (y (θ))) y (θ)

[
− 1

εDw (y∗)
δ (y (θ)− y∗) + γ (y (θ) , y∗)

]
+ (1− T ′ (y∗)− y∗T ′′ (y∗)) 1

εDw (y∗)
I{y(θ)≥y∗} −

ˆ y

0

(1− T ′ (y′)− y′T ′′ (y′)) γ (y′, y∗) dy′
}
,

and on social welfare:

Ĝ =−
ˆ ∞
y∗

g (y) fY (y) dy +
εSr (y∗)

1− T ′ (y∗)
× . . .{[

(1− T ′ (y∗)) g (y∗) y∗fY (y∗)− (1− T ′ (y∗)− y∗T ′′ (y∗))
ˆ ∞
y∗

g (y) fY (y) dy

]
1

εDw (y∗)

−
ˆ ∞

0

[
(1− T ′ (y)) g (y) yfY (y)− (1− T ′ (y)− yT ′′ (y))

ˆ ∞
y

g (y′) fY (y′) dy′
]
γ (y, y∗) dy

}
.

But note that

(1− T ′ (y)) g (y) yfY (y)− (1− T ′ (y)− yT ′′ (y))

(ˆ ∞
y

g (y′) fY (y′) dy′
)

=−
[
(1− T ′ (y)) y

(ˆ ∞
y

g (y′) fY (y′) dy′
)]′

.

Substituting in the expression for Ĝ, we obtain that the normalized e�ect of the perturbation on

social welfare is given by:

Ŵ =Ĝ + R̂ = 1− FY (y∗)−
ˆ ∞
y∗

g (y) fY (y) dy − T ′ (y∗)

1− T ′ (y∗)
εSr (y∗) y∗fY (y∗) +

εSr (θ∗)

1− T ′ (y (θ∗))

×

{[
(1− T ′ (y)) y (1− FY (y))− (1− T ′ (y)) y

(ˆ ∞
y

g (x) fY (x) dx

)]′
y=y∗

1

εDw (y∗)

+

ˆ
R+

[
− (1− T ′ (y)) y (1− FY (y)) + (1− T ′ (y)) y

(ˆ ∞
y

g (x) fY (x) dx

)]′
γ (y, y∗) dy

}
.

Now we have [
(1− T ′ (y)) y (1− FY (y))− (1− T ′ (y)) y

(ˆ ∞
y

g (x) fY (x) dx

)]′
=

[
(1− T ′ (y)) y (1− FY (y))

(
1−
ˆ ∞
y

g (x)
fY (x)

1− FY (y)
dx

)]′
,

so that

Ŵ = (1− FY (y∗)) (1− ḡ (y∗))− T ′ (y∗)

1− T ′ (y∗)
εSr (y∗) y∗fY (y∗)

+
εSr (y∗)

1− T ′ (y∗)

[
A′ (y∗)

1

εDw (y∗)
−
ˆ
R+

A′ (y) γ (y, y∗) dy

]

107



where we denote

A (y) ≡ (1− T ′ (y)) y (1− FY (y)) (1− ḡ (y)) ,

A′ (y∗) = (1− T ′ (y∗)) (g (y∗)− 1) y∗fY (y∗) + (1− T ′ (y∗)− y∗T ′′ (y∗)) (1− ḡ (y∗)) (1− FY (y∗)) .

Now, at the optimum we must have Ŵ/ (1− FY (y∗)) = 0. This implies:

0 =1− ḡ (y∗)− T ′ (y∗)

1− T ′ (y∗)
εSr (y∗)

y∗fY (y∗)

1− FY (y∗)
+ εSr (y∗)

(
1− y∗T ′′ (y∗)

1− T ′ (y∗)

)
(1− ḡ (y∗))

1

εDw (y∗)

+ εSr (y∗) (g (y∗)− 1)
y∗fY (y∗)

1− FY (y∗)

1

εDw (y∗)
− εSr (y∗)

1− T ′ (y∗)
1

1− FY (y∗)

ˆ
R+

A′ (y) γ (y, y∗) dy.

Rearranging terms and using 1
εSr (y∗)

+ (1− p (y∗)) 1
εDw (y∗)

= 1
εr(y∗) leads to the optimal tax formula

(102).

Proof of Proposition 3. We now derive equation (22) from the general formula (102). Inte-

grating by parts the term ˆ
R+

A′ (y)

(1− T ′ (y∗)) y∗fY (y∗)
γ (y, y∗) dy

in the optimal tax formula using A (0) = 0 and A (ȳ) = 0 yields

T ′ (y∗)

1− T ′ (y∗)
=

1

εr (y∗)
(1− ḡ (y∗))

1− FY (y∗)

y∗fY (y∗)
+ (g (y∗)− 1)

1

εDw (y∗)

+

ˆ
R+

(1− ḡ (y))

(
1− FY (y)

y∗fY (y∗)

)(
1− T ′ (y)

1− T ′ (y∗)

)
dγ (y, y∗)

dy
dy.

Equation (22) follows immediately from this expression since dγ(y,y∗)
dy = 0 when the production

function is CES.

Integral equation for the optimal tax schedule. We �nally show how to rewrite formula

(102) as an integral equation. Denote by T̄ ′ the optimal tax schedule in the case of a CES production

function (formula (22)). Multiplying both sides of the previous equation by 1−T ′ (y (θ∗)), we obtain

the following formula for the optimal retention rate r (θ∗) ≡ 1−T ′ (y (θ∗)), letting r̄ (θ∗) denote the

retention rate in the CES case:

r (θ∗) =
1

1 + T̄ ′(y(θ∗))
1−T̄ ′(y(θ∗))

[
1−
ˆ

Θ

r (θ)
y (θ) (1− ḡ (θ)) (1− F (θ)) γ′ (θ, θ∗)

y (θ∗) f (θ∗)
dθ

]

=r̄ (θ∗)

[
1−
ˆ

Θ

(1− ḡ (θ)) (1− F (θ)) y (θ)
γ′ (θ, θ∗)

y (θ∗) f (θ∗)
r (θ) dθ

]
.

This is now a well-de�ned integral equation in r (θ), so that we can use the mathematical tools

introduced in Section 2 to characterize further the optimal tax schedule.
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E.2.3 Generalization: preferences with income e�ects

In this section, we allow for general (non-quasilinear) preferences and show how to construct the

counteracting perturbation in this case.

Construction of the counteracting perturbation. Consider the tax reform T̂1 (y) = I{y≥y∗},
so that T̂ ′1 (y) = δy∗ (y) is the Dirac delta function at y∗. Denote by θ∗ the type that earns y (θ∗) = y∗

in the baseline equilibrium. We construct a counteracting perturbation T̂2 that cancels out the

general equilibrium e�ects on labor supply. In particular, the combination of perturbations T̂1 + T̂2

leaves the labor supply of every individual θ 6= θ∗ unchanged, i.e., l̂ (θ) = 0. We have, in response

to this combination of perturbations,

l̂(θ|T̂1 + T̂2)

l (θ)
=− εr (θ)

T̂ ′1 (y (θ)) + T̂ ′2 (y (θ))

1− T ′ (y (θ))
+ εR (θ)

T̂1 (y (θ)) + T̂2 (y (θ))

(1− T ′ (y (θ))) y (θ)

+ εw (θ)

ˆ
Θ

γ (θ, θ′)
l̂(θ′|T̂1 + T̂2)

l (θ′)
dθ′.

By contrast, the impact of the perturbation T̂1 in the model with exogenous wages is given by

l̂pe(θ|T̂1) =− εSr (θ)
T̂ ′1 (y (θ))

1− T ′ (y (θ))
+ εSR (θ)

T̂1 (y (θ))

(1− T ′ (y (θ))) y (θ)
.

Imposing equality of the two expressions for all θ ∈ Θ leads to

εr (θ)
T̂ ′2 (y (θ))

1− T ′ (y (θ))
− εR (θ)

T̂2 (y (θ))

(1− T ′ (y (θ))) y (θ)

=εw (θ)
1

εDw (θ)

[
εSr (θ)

T̂ ′1 (y (θ))

1− T ′ (y (θ))
− εSR (θ)

T̂1 (y (θ))

(1− T ′ (y (θ))) y (θ)

]

+ εw (θ)

ˆ
Θ

γ (θ, θ′)

[
−εSr (θ′)

T̂ ′1 (y (θ′))

1− T ′ (y (θ′))
+ εSR (θ′)

T̂1 (y (θ′))

(1− T ′ (y (θ′))) y (θ′)

]
dθ′.

This is an ordinary di�erential equation for T̂2 that can easily be solved (note that the right hand side

is a known function). Changing variables from types to incomes in this equation can be rewritten

as

εr (y)
T̂ ′2 (y)

1− T ′ (y)
− εR (y)

T̂2 (y)

(1− T ′ (y)) y
= H1 (y)

where

H1 (y) =εw (y)
1

εDw (θ)

[
εSr (y)

T̂ ′1 (y)

1− T ′ (y)
− εSR (y)

T̂1 (y)

(1− T ′ (y)) y

]

+ εw (y)

ˆ
γ (y, y′)

[
−εSr (y′)

T̂ ′1 (y′)

1− T ′ (y′)
+ εSR (y′)

T̂1 (y′)

(1− T ′ (y′)) y′

]
dy′.
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The solution to this di�erential equation reads

T̂2 (y) = −
ˆ y

0

1− T ′ (y′)
εr (y′)

exp

(
−
ˆ y

y′

εR (y′′)

εr (y′′)

dy′′

y′′

)
H1 (y′) dy′.

Thus the construction of a counteracting tax reform designed to cancel out the general-equilibrium

e�ects on labor supply can be easily extended to a general utility function u (c, l). The derivation of

the optimal tax formula then follows the same steps as in the case of a quasilinear utility function.

E.3 Alternative derivation II: mechanism design

In this section we study the government problem (82)-(84) using mechanism-design arguments to

derive the optimal informationally-constrained e�cient consumption and labor supply allocations

{c (θ) , l (θ)}θ∈Θ, subject to feasibility and incentive compatibility of these allocations.

We start by introducing some useful notations. From de�nition (2), the wage w (θ) can be

represented as a functional ω : Θ× R+ ×M→ R+ that has three arguments: the individual's type

θ ∈ Θ, her labor supply L (θ) ∈ R+, and the measure L ∈M that describes all agents' labor e�ort

w (θ) = ω (θ, L (θ) ,L ) . (105)

We de�ne the cross-wage elasticity as

γ (θ, θ′) = L (θ′)× lim
µ→0

1

µ
{lnω (θ, L (θ) ,L + µδθ′)− lnω (θ, L (θ) ,L )} ,

where δθ′ ≡ δ (θ − θ′) is the Dirac delta function at θ′, and the own-wage elasticity as

−α (θ) ≡ − 1

εDw (θ)
=
∂ lnω (θ, L (θ) ,L )

∂ lnL (θ)
.

We �nally de�ne the total wage elasticity γ̊ (θ, θ′), for any (θ, θ′) ∈ Θ2, by

γ̊ (θ, θ′) = γ (θ, θ′)− α (θ′) δθ′ (θ) . (106)

Government's problem

Rather than solving for the allocation {c(θ), l(θ)}θ∈Θ, it is useful to change variables and optimize

over {V (θ), l(θ)}θ∈Θ, where V (θ) ≡ c(θ)− v (l(θ)). The mechanism design problem then reads

max
V (·),l(·)

ˆ
Θ

G(V (θ))f(θ)dθ (107)

s.t.

ˆ
Θ

[V (θ) + v(l(θ))] f(θ)dθ ≤ F (L ) (108)

and V (θ) ≥ V (θ′) + v (l(θ′))− v
(
l(θ′)

w(θ′)

w(θ)

)
, ∀ (θ, θ′) ∈ Θ2. (109)
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The incentive compatibility constraint (109) of type θ can be expressed as a standard envelope

condition V ′(θ) = v′ (l(θ)) l(θ)w
′(θ)
w(θ) , along with the monotonicity constraints w′(θ) > 0 and y′(θ) ≥

0. (As is standard in the literature, we assume that these monotonicity conditions are satis�ed and

verify them ex-post in our numerical simulations.) An issue with this envelope condition is that

w′(θ) is not only a function of the control variable l(θ), but also of its derivative l′(θ). Indeed, from

(105), we have w′(θ) = ω1(θ, L(θ),L ) + ω2(θ, L(θ),L )L′(θ), where L′ (θ) = l′ (θ) f (θ) + l (θ) f ′ (θ).

We thus de�ne b(θ) = l′(θ) and maximize (107) subject to (108), the envelope condition

V ′(θ) = v′ (l(θ)) l(θ)
ω1 [θ, l(θ)f(θ),L ] + [l(θ)f ′(θ) + b(θ)f(θ)]ω2 [θ, l(θ)f(θ),L ]

w(θ)
, (110)

and

l′(θ) = b(θ). (111)

This is now a well-de�ned optimal control problem with two state variables, V (θ) and l(θ), and one

control variable, b(θ) (see Seierstad and Sydsaeter (1986)).

Optimal tax schedule

We now characterize the solution to the government problem (107), (108), (110), (111). Below we

prove the following proposition:

Proposition 4. For any θ ∈ Θ, the optimal marginal tax rate τ (θ) ≡ T ′ (y (θ)) of type θ satis�es

τ(θ)

1− τ(θ)
=

(
1 +

1

e(θ)

)
µ(θ)

λw(θ)fW (w(θ))
−
´

Θ
[µ(x)v′(l(x))l(x)]

′
γ̊ (x, θ) dx

λ(1− τ(θ))y(θ)f(θ)
, (112)

where µ(θ) = λ
´ θ̄
θ

(1− g (x)) f(x)dx is the Lagrange multiplier on the envelope condition (110) of

type θ.

Before proceeding to the formal proof, we start by describing the economic meaning of formula

(112).

Interpretation of formula (112)

The �rst term on the right hand side of (112) is the formula for optimal taxes we would obtain

in partial equilibrium (see Diamond (1998)). The second term captures the e�ect of a variation in

type-θ labor supply on each incentive constraint.

To gain intuition, consider �rst a model with two types, as in Stiglitz (1982). In this case, a

decrease in the tax on the high type increases her labor supply, which in turn decreases her wage

rate; conversely a higher tax on the low type raises her wage. This compression of the pre-tax wage

distribution in general equilibrium is bene�cial as it relaxes the downward incentive constraint (109)

of the high type. Therefore, optimal taxes are more regressive in general equilibrium: the optimal

marginal tax rate on the high type is negative (rather than zero) and it is higher for the low type

than in partial equilibrium.
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Now suppose that there is a discrete set of types, Θ = {θi}i=1,..,N . An increase in the wage

w(θi) reduces the gap between w(θi+1) and w(θi), and therefore relaxes the downward incentive

constraint (109) of type θi+1. Denoting by µ(θi+1) the Lagrange multiplier on this constraint, this

perturbation has a welfare impact equal to

µ(θi+1)v′
(
l(θi)

w(θi)

w(θi+1)

)
l(θi)

w(θi+1)
dw(θi) > 0. (113)

On the other hand, the perturbation increases the gap between w(θi) and w(θi−1), and therefore

tightens the downward incentive constraint of type θi, which has a welfare impact equal to

− µ(θi)v
′
(
l(θi−1)

w(θi−1)

w(θi)

)
l(θi−1)

w(θi−1)

w(θi)2
dw(θi) < 0. (114)

Whether the perturbation increases or decreases welfare depends on whether (113) or (114) is larger

in magnitude. First, this depends on the relative size of the Lagrange multipliers, µ(θi+1)−µ(θi), that

is, on which incentive constraint binds more strongly. In the continuous-type limit Θ =
[
θ, θ̄
]
, this

yields the term µ′(x) in (112). Second, it depends on the relative change in the values of deviating,

captured by the di�erence between v′
(
l(θi−1)w(θi−1)

w(θi)

)
l(θi−1)w(θi−1)

w(θi)2 and v′
(
l(θi)

w(θi)
w(θi+1)

)
l(θi)

w(θi+1) .

In the continuous-type limit, this yields the term [v′(l(x))l(x)]
′
in (112).

Proofs

We now prove formula (112), i.e., we solve the optimal control problem (107, 108, 110, 111).

Proof of Proposition 4. The Lagrangian writes:

L =

ˆ
Θ

G (V (θ)) f(θ)dθ + λ

{
F (L )−

ˆ
Θ

[V (θ) + v (l(θ))] f(θ)dθ

}
−
ˆ

Θ

µ(θ)v′ (l(θ)) l(θ)
ω1 [θ, l(θ)f(θ),L ] + [l(θ)f ′(θ) + b(θ)f(θ)]ω2 [θ, l(θ)f(θ),L ]

ω [θ, l(θ)f(θ),L ]
dθ

−
ˆ

Θ

µ′(θ)V (θ)dθ −
ˆ

Θ

η(θ)b(θ)dθ −
ˆ

Θ

η′ (θ) l(θ)dθ.

We denote by w̃(θ) ≡ ŵ (θ) /w (θ) the percentage change in the wage as skills increase:

w̃(θ) ≡ω̃ [θ, l(θ)f(θ),L ]

≡ω1 [θ, l(θ)f(θ),L ] + [l(θ)f ′(θ) + b(θ)f(θ)]ω2 [θ, l(θ)f(θ),L ]

ω [θ, l(θ)f(θ),L ]
.

(115)

The �rst-order condition for V (θ) reads:

G′ (V (θ)) f(θ)− λf(θ)− µ′(θ) = 0. (116)
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The �rst-order conditions for b(θ) reads:

− µ(θ)v′ (l(θ)) l(θ)
∂w̃(θ)

∂b(θ)
− η(θ) = 0. (117)

The �rst-order conditions for l(θ) is obtained by perturbing L in the Dirac direction δθ and evalu-

ating the Gateaux derivative of L (i.e., heuristically, ∂L/∂l(θ)�):

dL (L , δθ) =λw(θ)f(θ)− λv′(l(θ))f(θ)− µ(θ)v′′ (l(θ)) l(θ)w̃(θ)− µ(θ)v′(l(θ))w̃(θ)

−
ˆ

Θ

µ(θ′)v′(l(θ′))l(θ′)dω̃ (θ′, δθ) dθ
′ − η′(θ) = 0, (118)

where dω̃ (θ′, δθ) (or, heuristically, ∂w̃(θ′)/∂l(θ)) is de�ned by:

dω̃ (θ′, δθ) ≡ lim
µ→0

1

µ
{ω̃ [θ′, (l (θ′) + µδθ (θ′)) f (θ′) ,L + µδθ]− ω̃ [θ′, l (θ′) f (θ′) ,L ]} . (119)

Now, note that
∂w̃(θ)

∂b(θ)
=
ω2 [θ, l(θ)f(θ),L ] f(θ)

ω(θ, l(θ)f(θ),L )
= −α(θ)

l(θ)
.

(Intuitively, the second equality comes from the fact that, by de�nition of the own-wage elasticity,

α = − l
w
∂w
∂l , keeping L constant). Substituting for ∂w̃(θ)

∂b(θ) in (117) and di�erentiating with respect

to θ leads to:

η′(θ) =µ′(θ)v′ (l(θ))α (θ) + µ(θ)v′′ (l(θ)) l′(θ)α (θ) + µ(θ)v′ (l(θ))α′ (θ) .

We can use this expression to substitute for η′(θ) into (118). We now analyze the integral term in

this equation. From (119), we have

dω̃ (θ′, δθ) =ω̃2 (θ′, l (θ′) fθ (θ′) ,L ) f (θ′) δθ (θ′)

+ lim
µ→0

1

µ
{ω̃ [θ′, l (θ′) f (θ′) ,L + µδθ]− ω̃ [θ′, l (θ′) f (θ′) ,L ]}

≡ω̃2 (θ′, l (θ′) f (θ′) ,L ) f (θ′) δθ (θ′) + ω̃3,θ [θ′, l (θ′) f (θ′) ,L ] ,

where we introduce the short-hand notation ω̃3,θ in the last line for simplicity. Denote by ω̃13,θ and

ω̃23,θ the derivatives of ω̃3,θ with respect to its �rst and second variables, respectively. Now recall

the notation (115) and note that

ω̃2(θ, l(θ)f (θ) ,L )f (θ) =
[f (θ)ω12 + f ′(θ)ω2 + (l(θ)f ′(θ) + b(θ)f(θ)) f (θ)ω22]w(θ)

w2(θ)

− [ω1 + (l(θ)f ′(θ) + b(θ)f(θ))ω2] f (θ)ω2

w2(θ)
,

=
ω12 + f ′(θ)

f(θ) ω2 + [l(θ)f ′(θ) + b(θ)f(θ)]ω22

w(θ)
f (θ) +

w̃(θ)

l (θ)
α (θ) .
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Now, we have

−
(
α (θ)

l (θ)

)′
=
{[ω21 + (l(θ)f ′(θ) + b(θ)f(θ))ω22] f (θ) + ω2f

′ (θ)}w (θ)

w2 (θ)

− ω2f (θ) [ω1 + (l(θ)f ′(θ) + b(θ)f(θ))ω2]

w2 (θ)

=
ω12 + f ′(θ)

f(θ) ω2 + [l(θ)f ′(θ) + b(θ)f(θ)]ω22

w (θ)
f (θ) +

w̃(θ)

l (θ)
α (θ) .

Therefore, the previous two equalities imply

ω̃2 [θ, l(θ)f (θ) ,L ] f (θ) = −
(
α (θ)

l (θ)

)′
=
−α′ (θ) l (θ) + α (θ) b (θ)

l2 (θ)
. (120)

Next, from de�nition (115) we have (omitting the arguments (θ′, L(θ′),L ) on the right hand side)

ω̃3,θ [θ′, l (θ′) f (θ′) ,L ]

=
ω13,θ + (l(θ′)f ′(θ′) + b(θ′)f(θ′))ω23,θ

w (θ′)
− [ω1 + (l(θ′)f ′(θ′) + b(θ′)f(θ′))ω2]ω3,θ

w2 (θ′)

=
ω13,θ + (l(θ′)f ′(θ′) + b(θ′)f(θ′))ω23,θ

w (θ′)
− w̃ (θ′)

l (θ)
γ (θ′, θ) ,

(121)

where the second equality follows from the de�nition of w̃ (θ′) and of the cross-wage elasticities

γ (θ′, θ) =
l (θ)

w (θ′)
× lim
µ→0

1

µ
{ω [θ′, l (θ′) f (θ′) ,L + µδθ]− ω [θ′, l (θ′) f (θ′) ,L ]}

=
l (θ)

w (θ′)
ω3,θ (θ′, l (θ′) f (θ′) ,L ) .

Note moreover that this equality implies

∂γ (θ′, θ)

∂θ′
=l (θ)

ω13,θ (θ′, l (θ′) f (θ′) ,L ) + (l(θ′)f ′(θ′) + b(θ′)f(θ′))ω23,θ (θ′, l (θ′) f (θ′) ,L )

w (θ′)

− l (θ) ω3,θ (θ′, l (θ′) f (θ′) ,L )

w2 (θ′)
× . . .

[ω1 (θ′, l (θ′) f (θ′) ,L ) + (l(θ′)f ′(θ′) + b(θ′)f(θ′))ω2 (θ′, l (θ′) f (θ′) ,L )]

=l (θ)
ω13,θ + (l(θ′)f ′(θ′) + b(θ′)f(θ′))ω23,θ

w (θ′)
− w̃ (θ′) γ (θ′, θ) ,

and thus, from (121)

ω̃3,θ [θ′, l (θ′) f (θ′) ,L ] =
1

l (θ)

∂γ (θ′, θ)

∂θ′
. (122)

114



Substitute equations (120) and (122) in (118) to get:

0 =λw(θ)f(θ)− λv′(l(θ))f(θ)− µ(θ)v′′ (l(θ)) l(θ)w̃(θ)− µ(θ)v′(l(θ))w̃(θ)

− µ′(θ)v′ (l(θ))α (θ)− µ(θ)v′′ (l(θ)) b (θ)α (θ)− µ(θ)v′ (l(θ))
b (θ)

l (θ)
α (θ)

−
ˆ

Θ

µ(θ′)v′(l(θ′))
l(θ′)

l (θ)

∂γ (θ′, θ)

∂θ′
dθ′. (123)

Using the de�nition of the labor supply elasticity e (θ) and de�ning the wedge (1 − τ(θ))w(θ) =

v′(l(θ)), we obtain:

0 =λτ(θ)w(θ)f(θ) + µ(θ)(1− τ(θ))w(θ)

(
1 +

1

e(θ)

){
− l
′ (θ)

l (θ)
α (θ)− w̃(θ)

}
− µ′(θ)(1− τ(θ))w(θ)α (θ)− 1

l (θ)

ˆ
Θ

µ(θ′)(1− τ(θ′))y(θ′)
∂γ (θ′, θ)

∂θ′
dθ′.

Using the fact that w̃(θ) = w′(θ)
w(θ) , dividing through by λ(1−τ(θ))w(θ)f(θ), and using the relationship

between the densities of productivities and wages yields:

τ(θ)

1− τ(θ)
=

(
1 +

1

e(θ)

)
µ(θ)

λw(θ)fW (w(θ))

1 + α (θ)

l′(θ)
l(θ)

w′(θ)
w(θ)

+
µ′(θ)

λf(θ)
α (θ)

+
1

λ(1− τ(θ))y(θ)f(θ)

ˆ
Θ

µ(θ′)(1− τ(θ′))y(θ′)
∂γ (θ′, θ)

∂θ′
dθ′.

(124)

Note that for a CES production function, we have
∂γ(θ′,θ)
∂θ′ = 0.

Finally, an alternative optimal tax formula is given by integrating the previous equation by parts

(with the appropriate boundary conditions on µ (θ′)):

ˆ
Θ

µ(θ′)(1− τ(θ′))y(θ′)
∂γ (θ′, θ)

∂θ′
dθ′ = −

ˆ
Θ

γ (θ′, θ)
d

dθ′
[µ(θ′)(1− τ(θ′))y(θ′)] dθ′.

We therefore obtain

τ(θ)

1− τ(θ)
=

(
1 +

1

e(θ)

)
µ(θ)

λw(θ)fW (w(θ))

1 + α (θ)

l′(θ)
l(θ)

w′(θ)
w(θ)


+
µ′(θ)

λf(θ)
α (θ)−

´
Θ

[µ(x)v′(l(x))l(x)]
′
γ (x, θ) dx

λ(1− τ(θ))y(θ)f(θ)

=

(
1 +

1

e(θ)

)
µ(θ)

λw(θ)fW (w(θ))
−
´

Θ
[µ(x)v′(l(x))l(x)]

′
γ̊ (x, θ) dx

λ(1− τ(θ))y(θ)f(θ)

+ α (θ)

{(
1 +

v′′(l(θ))l(θ)

v′(l(θ))

)
µ(θ)

λf(θ)

l′ (θ)

l (θ)
+
µ′(θ)

λf(θ)
− . . .

µ′(θ)v′(l(θ))l(θ) + µ(θ)v′′(l(θ))l′(θ)l(θ) + µ(θ)v′(l(θ))l′(θ)

λv′(l(θ))l(θ)f(θ)

}
.
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where the second equality uses the de�nition (106) of γ̊ (x, θ) and rearranges terms. The terms in the

curly brackets in the second and third lines cancel each other out. Finally, the �rst-order condition

(116) implies µ′(θ) = G′ (V (θ)) f(θ)− λf(θ), so that, using µ(θ̄) = 0,

µ(θ) =−
ˆ θ̄

θ

[G′ (V (x)) f(x)− λf(x)] dx

=λ

ˆ θ̄

θ

[
1− G′ (V (x)) f(x)

λf(x)

]
f(x)dx = λ

ˆ θ̄

θ

(1− g (x)) f(x)dx.

This concludes the proof.

We now prove that the optimal tax formula obtained by the variational approach coincides with

the formula obtained by solving the mechanism design problem.

E.3.1 Equivalence of the mechanism-design and perturbation approaches

Proof of the equivalence of (112) and (102). Substitute for µ(θ) = λ
´ θ
θ

(1−g(x))dF (x) in the

optimal tax formula (112) evaluated at θ∗ to get:

T ′ (y (θ∗))

1− T ′ (y (θ∗))
≡ τ(θ∗)

1− τ(θ∗)

=

(
1 +

1

e (θ∗)

) ´ θ
θ∗

(1− g(x))f(x)dx

fW (w(θ∗))w(θ∗)
−

´
Θ

[
v′(l(x))l(x)

(´ θ
x

(1− g(x′))f(x′)dx′
)]′

γ̊(x, θ∗)dx

(1− τ(θ∗)) y(θ∗)f(θ∗)

=

(
1 +

1

e (θ∗)

)
1− F (θ∗)

fW (w(θ∗))w(θ∗)

(ˆ θ

θ∗
(1− g(x))

f(x)

1− F (θ∗)
dx

)

−

´
Θ

[
(1− T ′ (y (x))) y(x) (1− F (x))

(´ θ
x

(1− g(x′)) f(x′)
1−F (x)dx

′
)]′

γ̊(x, θ∗)dx

(1− T ′ (y (θ∗))) y(θ∗)f(θ∗)
,

where the last equality uses individual x's �rst order condition (1). Using the de�nition of the

average marginal welfare weight ḡ (θ) =
´ θ
θ
g(x)) f(x)

1−F (θ)dx, and multiplying and dividing the �rst

term on the right hand side by w′(θ∗)/w(θ∗), we can rewrite this expression as

T ′ (y (θ∗))

1− T ′ (y (θ∗))
=

(
1 +

1

e (θ∗)

)
w′(θ∗)

w(θ∗)
(1− ḡ (θ∗))

1− F (θ∗)

fW (w(θ∗))w′(θ∗)

−
´

Θ
[(1− T ′ (y (θ))) y(θ) (1− F (θ)) (1− ḡ (θ))]

′
γ̊(θ, θ∗)dθ

(1− T ′ (y (θ∗))) y(θ∗)f(θ∗)
.

We now change variables from types and wages to incomes in each of the terms of this equation.

First, recall that F (θ∗) = FW (w (θ∗)) = FY (y (θ∗)), and f (θ∗) = fY (y (θ∗))× dy(θ)
dθ

∣∣∣
θ=θ∗

. Second,
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we can rewrite the integral as

ˆ
Θ

d

dθ
[(1− T ′ (y (θ))) y(θ) (1− F (θ)) (1− ḡ (θ))]× γ̊ (θ, θ∗) dθ

=

ˆ
Θ

[
(1− T ′ (y (θ))− y (θ)T ′′ (y (θ))) (1− F (θ)) (1− ḡ (θ))

dy (θ)

dθ

− (1− T ′ (y (θ))) y (θ) (1− g (θ)) f (θ)

]̊
γ (θ, θ∗) dθ

=

(
dy (θ∗)

dθ

)ˆ
R+

[
(1− T ′ (y)− yT ′′ (y)) (1− FY (y)) (1− ḡ (y))

− (1− T ′ (y)) y (1− g (y)) fY (y)

]̊
γ (y, y∗) dy

=

(
dy (θ∗)

dθ

)ˆ
R+

d

dy
[(1− T ′ (y)) y (1− FY (y)) (1− ḡ (y))]× γ̊ (y, y∗) dy,

where the second equality follows from a change variables from types to incomes. Third, we have

w′(θ∗)

w(θ∗)

1− F (θ∗)

fW (w(θ∗))w′(θ∗)
=
w′(θ∗)

w(θ∗)

1− F (θ∗)

f(θ∗)
=

w′(θ∗)
w(θ∗)

y′(θ∗)
y(θ∗)

1− FY (y(θ∗))

y(θ∗)fY (y(θ∗))
.

=
1

1 + εSw(θ∗)

1− FY (y(θ∗))

y(θ∗)fY (y(θ∗))
.

Collecting all the terms and using 1
1+εSw(θ)

= e(θ)
1+e(θ)

1
εSr (θ)

, we obtain

T ′ (y (θ∗))

1− T ′ (y (θ∗))
=

1

εSr (θ∗)
(1− ḡ (θ∗))

1− FY (y(θ∗))

y(θ∗)fY (y(θ∗))

−

´
R+

d
dy [(1− T ′ (y)) y (1− FY (y)) (1− ḡ (y))] γ̊ (y, y∗) dy

(1− T ′ (y (θ∗))) y (θ∗) fY (y (θ∗))
,

which is exactly formula (102).

F Numerical simulations: details and robustness

F.1 Calibration of the model

F.1.1 Wage calibration as in Saez (2001)

Income distribution

We assume that incomes are log-normally distributed apart from the top, where we append a Pareto

distribution for incomes above $150,000. To obtain a smooth hazard ratio
1−Fy(y)
yfy(y) , we decrease the
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thinness parameter of the Pareto distribution linearly between $150,000 and $350,000 and let it be

constant at 1.5 afterwards (Diamond and Saez, 2011). In the last step we use a standard kernel

smoother to ensure di�erentiability of the hazard ratios at $150,000 and $350,000. We set the mean

and variance of the lognormal distribution at 10 and 0.95, respectively. The mean parameter is

chosen such that the resulting income distribution has a mean of $64,000, i.e., approximately the

average US yearly earnings. The variance parameter was chosen such that the hazard ratio at level

$150,000 is equal to that reported by Diamond and Saez (2011, Fig.2). The resulting hazard ratio

is illustrated in Figure 5.
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Figure 5: Calibrated hazard ratio
1−Fy(y)
yfy(y) of the U.S. income distribution

Model Primitives

Denote by θy the type of an agent who earns income y given the current tax system. Our �rst step

is then the same as in Saez (2001): we use the individual's �rst order condition 1−T ′(y) = v′
(
y
w

)
1
w

and her observed income and marginal tax rate in the data, to back out her wage. As in Saez (2001),

this gives us both the wage w(θy) as well as the labor supply l(θy) = y
w(θy) that correspond to that

income level y, given the current tax schedule.

CES. Assume that the production function is CES with a given parameter σ. Once we know the

wage w(θy), the labor supply l(θy), and the density of incomes fY (y), we can back out the primitive

parameters a(θy) of the CES production function (3) using the following formula

w(θy) = a(θy)

(
l(θy)fY (y)y′(θy)

F (L )

) 1
σ

,

where we know everything but a(θy) and y′(θy) ≡ dy(θ)
dθ

∣∣∣
θy
. We can without loss of generality

assume that θ is uniformly distributed in the unit interval. This pins down y′(θy), since we observe

the income percentiles in the data. We can therefore infer the parameter a(θy) for each y.
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Translog. For a Translog production the steps are very similar. We only have to make some

additional assumptions about how the elasticity of substitution varies with the distance between

types. Recall that the wage of type θy is given by

w (θy) =
F (L )

l (θy) y′(θy)

{
aθy + βθy ln (l (θy) y′(θy)) +

ˆ
Θ

χθy,θ′′ ln (l (θ′′) y′(θ′′)) dθ′′
}
,

where we assume w.l.o.g. that θ is uniformly distributed in the unit interval, and where we param-

eterize the functions β(·) and χ(·, ·) as explained in Section F.1.4 below. This only leaves a(θy) as

unknown parameters, which can thus be inferred directly from this wage equation.

F.1.2 The elasticity of taxable income in general equilibrium

Here, we brie�y describe the connection between our model and the empirical literature that esti-

mates the elasticity of taxable income. This can be best understood for an elementary tax reform

where the marginal tax rate would be raised by for individuals with income y(θ∗) and would be un-

changed for all income levels outside of this interval. We know from Proposition 1 that the relative

labor supply change of individuals of type θ∗ is given by:

l̂(θ∗)

l(θ∗)
= − εr(θ

∗)

1− T ′(y(θ∗))
δy∗(y

∗)− εw(θ∗)Γ(y(θ∗), y(θ∗))
εr(θ

∗)

1− T ′(y(θ∗))
.

The second term in this expression is dominated by the �rst (since the Dirac is in�nite at y∗), so that

the estimate for the taxable income elasticity would be given by εr(θ
∗) < εSr (θ∗). In the limiting case

α (θ∗) = ∞ this exactly identi�es the structural labor supply elasticity εSr (θ∗) (along the nonlinear

budget constraint). For α (θ∗) < ∞, however, the estimate would underestimate the labor supply

elasticity εSr (θ∗). Note that, if we have an estimate of the taxable income elasticity εr(θ
∗) and of

the structural parameter εSr (θ∗), we can easily back out the implied the elasticity of substitution.

Indeed, recall that

εr(θ
∗) =

εSr (θ∗)

1 + α(θ∗)εSr (θ∗)
.

For instance, if the structural elasticity is εSr (θ∗) = 0.33 (Chetty (2012), assuming a locally linear

tax schedule) and the taxable income elasticity is εr(θ
∗) = 0.25 (Saez, Slemrod, and Giertz (2012)),

we obtain

α(θ∗) =
1

εr(θ∗)
− 1

εSr (θ∗)
≈ 0.97.

If the production function is CES, this implies an approximately Cobb-Douglas technology.

F.1.3 Further results concerning the calibration of CES production func-

tions

Consider an economy where the distribution of incomes is observed. Denote by θ ∈ [0, 1] the

income percentile. I.e. y(θ) is the income of an individual at percentile θ. We now consider the

calibration of two di�erent CES production functions for this economy: a CES production function
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with a continuum of inputs, and a CES production function with 4 types of labor inputs (a �quartile

CES production function�). We then show that if we impose the same elasticity of substitution for

both production functions, they imply the same relative change in the average earnings of a given

quartile. Therefore, the structural wage e�ects that are estimated for coarser groups (i.e. quartiles)

are informative for the calibration of the production function with a continuum of types. That is, if

the true underlying production function is a CES with a continuum of types, then a researcher that

would estimate the structural wage changes through the lens of a quartile CES production function

would infer the correct elasticity of substitution.

Continuum CES production function

Consider the production function

Y =

(ˆ 1

0

a(θ)l(θ)
σ−1
σ dθ

) σ
σ−1

. (125)

As described above in Appendix , we can apply the calibration method of Saez (2001) to infer l(θ)

and w(θ) for each worker. And hence, given a choice for σ, we can also infer a(θ).

Now consider an increase in the labor supply of workers in a given income percentile θ′ by one

percent, where θ′ is located within the lowest quartile, that is, θ′ < .25. By equation (40), the wage

at percentile θ 6= θ′ adjusts (in percentage terms) by the direct (structural) e�ect

ŵ(θ)

w(θ)
=

1

σ

y(θ′)

Y
∀ θ 6= θ′

and the wage at percentile θ′ adjusts by

ŵ(θ′)

w(θ′)
= − 1

σ

(
1− y(θ′)

Y

)
.

We now derive the structural change in the average earnings in each quartile. For the top 3

quartiles, the average earnings in group j ∈ {2, 3, 4},

wj ≡
ˆ j×0.25

(j−1)×0.25

w(θ)l(θ)dθ,

increases, in response to the one percent increase in l (θ′), by

ŵj
wj

=
1

σ

y(θ′)

Y
∀ j ∈ {2, 3, 4} (126)

in percentage terms. Indeed, since the percentage change is the same for each individual (which is

a consequence of the CES assumption), the percentage change of the quartile's average is also the

same. For the lowest quartile, the percentage change in average earnings, in response to the one
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percent increase in l (θ′), is given by

ŵ1

w1
=
− 1
σw(θ′)l(θ′) +

´ 0.25

0
1
σ
w(θ′)l(θ′)

Y w(θ)l(θ)dθ´ 0.25

0
w(θ)l(θ)dθ

= − 1

σ

w(θ′)l(θ′)´ 0.25

0
w(θ)l(θ)dθ

(
1−
´ 0.25

0
w(θ)l(θ)dθ

Y

)
. (127)

Quartile CES production function

We want to show that the relative changes in the average earnings of all four quartiles are consistent

with the relative changes that would occur in case of a quartile production function that is de�ned

as follows

Y =

 4∑
j=1

L
s−1
s

j

 s
s−1

(128)

where

Lj =

ˆ j×0.25

(j−1)×0.25

A(θ)l(θ)dθ.

Denote the wage for labor of type j ∈ {1, 2, 3, 4} by

ωj =
∂Y

∂Lj
=

(
Lj

Y

)− 1
s

.

Thus, the wage per unit of e�ort (or hour) of type θ in percentile j ∈ {1, 2, 3, 4} is given by

∂Y

∂l(θ)
= ωjA(θ).

The relationship ωjA(θ) = w(θ), where w(θ) is the wage obtained for the CES production function

with a continuum of inputs de�ned above, has to hold between the calibrated parameters of the two

di�erent models. Now, based on the income levels y(θ) and the calibration as in Saez (2001), we

can thus infer ωjA(θ) for each θ in quartile j ∈ {1, 2, 3, 4}. Note that this does not fully pin down

the schedule of A(θ) and ωj for all j ∈ {1, 2, 3, 4}.
As above, consider an increase in labor supply of a given type θ′ ∈ [0, 0.25) by one percent, for the

quartile production function. The percentage change in average earnings in quartile j ∈ {1, 2, 3, 4},´ j×0.25

(j−1)×0.25
ωjA (θ) l (θ) dθ, due to this percentage increase in labor supply of type θ′, is given by

ω̂1

ω1
= −1

s

(
1−

ω1

´ 0.25

0
A(θ)l(θ)dθ

Y

)
A(θ′)l(θ′)´ 0.25

0
A(θ)l(θ)dθ

which is the same relative change of the average earnings of workers in the �rst quartile as (127)
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since ωjA(θ) = w(θ). The relative change in average earnings for j = 2, 3, 4 is given by

ω̂j
ωj

=
1

s

ω1

´ 0.25

0
A(θ)l(θ)dθ

Y

A(θ′)l(θ′)´ 0.25

0
A(θ)l(θ)dθ

∀ j ∈ {2, 3, 4}

which is the same as in (126).

Hence, the two models (continuum and quartile technologies (125) and (128), respectively) are

observationally equivalent if s = σ. That is, both production functions predict the same structural

change for the average earnings in each quartile in response to a labor supply change. That is, a

researcher who would group workers into quartiles (having in mind (128) as the production function)

and would infer the elasticity of substitution s by observing the structural own- and cross-wage

elasticities ω̂j , would obtain the correct value σ even if the true underlying production function is

(125).

F.1.4 Calibration of Translog production function with distance-dependent

elasticities of substitution

A criticism of the CES production function with a continuum of types is that high-skill workers

(say) are equally substitutable with middle-skill workers as they are with low-skill workers. We

therefore propose a more �exible parametrization of the production function that allows us to ob-

tain distance-dependent elasticities of substitution, i.e., such that closer skill types are stronger

substitutes. (Teulings (2005) obtains this distance-dependent property in an assignment model.)

Speci�cally, in this paragraph we explore quantitatively the implications of the transcendental-

logarithmic (Translog) production function. This speci�cation can be used as a second-order local

approximation to any production function (Christensen, Jorgenson, and Lau, 1973). With a contin-

uum of labor inputs, its functional form is given by

ln F
(
{L (θ)}θ∈Θ

)
= a0 +

ˆ
Θ

a (θ) lnL (θ) dθ + . . .

1

2

ˆ
Θ

β (θ) (lnL (θ))
2
dθ +

1

2

ˆ
Θ×Θ

χ (θ, θ′) (lnL (θ)) (lnL (θ′)) dθdθ′,

(129)

where for all θ, θ′,
´

Θ
a (θ′) dθ′ = 1, χ (θ, θ′) = χ (θ′, θ), and β (θ) = −

´
Θ
χ (θ, θ′) dθ′. These restric-

tions ensure that the technology has constant returns to scale. When χ (θ, θ′) = 0 for all θ, θ′, the

production function is Cobb-Douglas.

The elasticity of substitution between the labor of types θ and θ′ is given by

σ (θ, θ′) =

[
1 +

(
1

ρ(θ)
+

1

ρ(θ′)

)
χ(θ, θ′)

]−1

,

where ρ (θ) = w(θ)L(θ)
F(L ) = y(θ)f(θ)

E(y) denotes the type-θ labor share of output. (We derived the results

about the Translog production function in Appendix A.4.2 above.) To obtain distance-dependent
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elasticities, we propose the following speci�cation of the exogenous parameters:

χ (θ, θ′) =

(
1

ρc(θ)
+

1

ρc(θ′)

)−1 [
c1 − c2 exp

(
− 1

2s2
(yc(θ)− yc(θ′))2

)]
,

where c1, c2 are constants, and where ρ
c(θ) and yc(θ) are the current (i.e., empirically measured given

the actual tax system) income share and income of type θ. The local (i.e., such that ρ(θ) = ρc(θ)

and y(θ) = yc(θ)) elasticity of substitution between workers in percentiles θ and θ′ is then given by

σ (θ, θ′) =

{
1 + c1

[
c2 − exp

(
− 1

2s2
(yc(θ)− yc(θ′))2

)]}−1

. (130)

The parameters c1 and c2 determine the values of the elasticity of substitution between types (θ, θ′)

with |y(θ)− y(θ′)| → ∞ and θ ≈ θ′, respectively. The parameter s speci�es the rate at which

σ (θ, θ′) falls as θ′ moves away from θ.

The left panel of Figure 6 shows the elasticity of substitution σ(θ, θ′) as a function of θ for such a

speci�cation, where σ (θ, θ′) varies between 0.5 and 10. We let θ ∈ Θ = [0, 1] be the agent's percentile

in the income distribution. We choose two values for θ′: the type that earns the median income

($33,500) and the type at the 95th percentile of the income distribution ($126,500), i.e., θ′ = 0.5

(red bold line) and θ′ = 0.95 (black dashed line). This illustrates how substitutable is the labor

supply of a given skill type, measured by its income level y(θ) on the x-axis, with the skills at the

median and the 95th percentile. By construction, the elasticity of substitution equals 10 as θ → θ′,

then decreases with the distance |θ − θ′|, and converges to a value of 0.5 as θ → 1. As a comparison,

we also plot the elasticity of substitution for a Cobb-Douglas production function, which is equal to

1 for any pair of types (θ, θ′). In Appendix F.2 we illustrate the cross-wage elasticities γ (θ, θ′) and

also explore alternative Translog speci�cations.

The right panel of Figure 6 plots the incidence on government revenue of the elementary tax

reforms at each income y(θ) (equation 18) for the Translog speci�cation (130) (black dashed curve)

and compares them to the Cobb-Douglas technology (blue dashed-dotted curve). The general-

equilibrium contribution with distance-dependence is also positive for high incomes and of slightly

larger magnitude.

F.2 Tax incidence analysis: additional simulations

F.2.1 Alternative speci�cation of the tax-and-transfer system

Our numerical simulations of Section 4 assume that the initial tax schedule (in the calibrated

U.S. economy) has a constant rate of progressivity (CRP). We now consider an alternative cali-

bration that di�ers in two ways: (i) we use a Gouveia-Strauss approximation for the income tax,

taken from Guner, Kaygusuz, and Ventura (2014); (ii) we also account for the phasing-out of means-

tested transfers programs that increase e�ective marginal tax rates, in particular for low incomes.

Concretely, for Gouveia-Strauss, we use the speci�cation including state taxes and consider the av-

erage overall households, i.e. we take the third to last column in Table 12 of Guner, Kaygusuz, and
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Figure 6: Left panel: Red bold (resp., black dashed) line: elasticity of substitution between types

with income y (θ) and the 50th (resp., 95th) percentile, for the Translog speci�cation (130). Blue

dashed-dotted lines: Cobb-Douglas speci�cation. Right panel: Black dashed line (resp., red bold

line, blue dashed-dotted line): Revenue gains of elementary tax reforms at income y(θ) for the

Translog speci�cation (130) (resp., for exogenous wages, Cobb-Douglas production).
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Figure 7: Alternative speci�cation of the baseline tax schedule. Red bold line: CRP tax schedule.

Black dashed line: Gouveia-Strauss approximation with additional distortions due to means-tested

transfers.

Ventura (2014). For the phasing-out of transfers, we use parametric estimates from Guner, Rauh,

and Ventura (2017), who consider a Ricker model T (I) = exp(α) exp(β0I)Iβ1 . We take their esti-

mates for all households and all transfer programs, i.e. α = −1.816, β0 = −4.290 and β1 = −0.006,

where I is expressed in multiples of average income. Since Guner, Rauh, and Ventura (2017) express

everything in year 2015 dollars and Guner, Kaygusuz, and Ventura (2014) in year 2000 dollars, we

use a CPI de�ator and express everything in terms of year 2000 dollars. This alternative baseline

schedule of marginal tax rates is illustrated in Figure 7 (black dashed line), which also shows for

comparison our speci�cation of a CRP tax schedule (red bold line) that we use in the main body.

Figure F.2.1 then illustrates the normalized revenue gains of elementary tax reforms for a CES

parameter σ = 0.6 (left panel) and σ = 3.1 (right panel). The additional general-equilibrium revenue
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Figure 8: Revenue gains of elementary tax reforms at y(θ). The initial tax schedule is the black

dashed line of Figure 7. Red bold line: model with exogenous wages. Black dashed lines: CES

production function with σ = 0.6 (left panel) and σ = 3.1 (right panel).

e�ects due to the endogeneity of wages are a bit smaller in magnitude than for a CRP initial tax

schedule, the general insight (Corollary and Figure 2) does not change.

F.2.2 Translog speci�cation

Figure 9 shows the cross-wage elasticities γ (θ, θ′) = ρ(θ′)+ χ(θ,θ′)
ρ(θ) for our main Translog speci�cation

(130). They are also distance-dependent: an increase in the labor supply of type θ′ tends to have

a larger impact on the wage of types that are more distant, and therefore less substitutable, to θ′.

Note that the cross-wage elasticities are decreasing in y(θ) for large θ, because of the term ρ(θ).
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Figure 9: Red bold (resp., black dashed) line: cross-wage elasticities between types with income

y (θ) and the 50th (resp., 95th) percentile, for the Translog speci�cation (130). Blue dashed-dotted

lines: Cobb-Douglas speci�cation.

The left panel of Figure 10 shows the elasticities of substitution between individuals with income

y(θ) and individuals at the 95th percentile for four cases. Case 1 is the speci�cation of the main
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body. Case 2 implies the same minimal and maximal values for the elasticities of substitution but

they decrease more slowly with distance (we chose s = 100, 000 instead of s = 50, 000). Cases 3 and

4 are analogouss to Cases 1 and 2 with the di�erence that the maximal value for the elasticity of

substitution is equal to 20 instead of 10. The right panel of Figure 10 shows the revenue gains of

elementary tax reforms at income y(θ) for all four cases. The case with exogenous wages is shown

as a comparison. The normalized revenue gains are similar for all four cases. They are almost

indistinguishable if we compare Cases 1 and 3, and Cases 2 and 4 respectively. The reason is that

in these cases, the respective values of the own-wage elasticities are very similar. This is illustrated

in Figure 11.
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Figure 10: Left panel: elasticity of substitution between income y(θ) and the 95th income percentile

in four cases. Right panel: normalized revenue gain of elementary tax reforms at y(θ) in these four

cases and in the exogenous-wage case.
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Figure 11: Own-wage elasticities α(θ) as a function of y(θ) for the four Translog speci�cations.

F.2.3 Incidence for non-Rawlsian welfare functions

Here we ask how our tax incidence results di�er if, instead of focusing on revenue e�ects (i.e.,
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Rawlsian welfare), we consider alternative concave social welfare functions G(u) = u1−κ

1−κ . Welfare

gains are expressed in terms of public funds. For a low taste for redistribution (κ = 1, see the left

panel of Figure 12), the welfare gains of raising tax rates on high incomes are muted due to general

equilibrium. For a stronger taste for redistribution (κ = 3, see the right panel of Figure 12), general

equilibrium e�ects make raising top tax rates more desirable. The reason is as follows. General

equilibrium e�ects make raising top tax rates more desirable because the tax revenue increase is

higher. At the same time the implied wage decreases for the working poor make them worse-o�.

In case of very strong redistributive tastes (i.e., when the social marginal welfare weights decrease

su�ciently fast with income, the extreme case being the Rawlsian welfare criterion), the tax revenue

gain gets a higher weight (since these gains are used for lump-sum redistribution at the margin). In

the case where relatively richer workers (for whom the lump-transfer is less important relative to the

very poor) still have signi�cant welfare weights, the wage e�ects dominates. The CES parameter in

the �gures is σ = 3.1.
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Figure 12: Welfare e�ect of elementary tax reforms at y(θ) for the welfare function G(u) = u1−κ

1−κ .

Left panel: κ = 1. Right panel: κ = 3.

F.3 Optimal taxation

F.3.1 Main simulations

We �rst consider a Rawlsian social objective. In Appendix F.3.3 we simulate optimal taxes for

concave social welfare functions G; our results are similar.

The role of the elasticity of substitution. The left panel of Figure 13 plots the optimal

marginal tax rates as a function of types for two di�erent values of the elasticity of substitution, and

for the exogenous-wage planner de�ned in (90). (The scale on the horizontal axis on the left panel

is measured in income; e.g., the value of the optimal marginal tax rate at the notch $100,000 is that

of a type θ who earns an income y (θ) = $100, 000 in the calibration to the U.S data. The income

that this type earns in the optimal allocation is generally di�erent (see the right panel).) The latter
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schedule has a familiar U-shape (Diamond, 1998; Saez, 2001). In line with our theoretical results

of Section 6, the top tax rate is lower in general equilibrium and decreasing with σ. Moreover,

the optimal marginal tax rates are reduced by an even larger amount at income levels close to the

bottom of the U (around $100,000), and are higher at low income levels (below $40,000). Note that,

since the exogenous-wage tax rates are already very high at those low income levels, the general

equilibrium e�ects are quantitatively very small (at most 1.8 percentage points). This con�rms our

�ndings of Corollary 8 and implies that the U-shape obtained for exogenous-wages is reinforced by

the general equilibrium considerations.

Translog production function. In the right panel of Figure 13, we illustrate the optimal marginal

tax rates in case of the Translog production function with distance-dependent elasticities of substitu-

tion, as calibrated above, and compare it to the optimal tax schedule in the case of a Cobb-Douglas

production function; the graph shows that the policy implications are hardly altered, which justi�es

our focus on the case of a CES production for the theoretical analysis of this section. In Section

F.3.4 below, we consider alternative Translog speci�cations and obtain similar conclusions.
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Figure 13: Optimal marginal tax rates as a function of types. Black dashed lines: exogenous

wages. Left panel: CES technology with σ = 3.1 (red bold line) and σ = 0.6 (blue dashed-dotted

line). Right panel: Translog technology (130) (blue dashed-dotted line) and Cobb-Douglas (σ = 1)

(red bold line).

U-shape of the general-equilibrium e�ect. Next, we plot in Figure 14 the shape of the general-

equilibrium correction to the optimal taxes obtained in the model with exogenous wages. We do so by

applying our incidence formula (18) using (90) (i.e., the black-dotted curve in Figure 13) as our initial

tax schedule. Recall that Corollary 8 addresses the same question analytically using the SCPE as

the exogenous-wage benchmark. The red bold line plots the e�ects of the tax reform according to the

exogenous-wage planner (90). These e�ects are uniformly equal to zero by construction. The black

dashed line shows that when the low-income marginal tax rates are high (as in the exogenous-wage

optimum) rather than low (as in the CRP tax code assumed in Corollary ), the general equilibrium

forces call for lower tax rates for intermediate and high incomes, and higher marginal tax rates for

low incomes. This graph implies that starting from the exogenous-wage optimum, the gains from
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Figure 14: Tax incidence around the exogenous-wage optimum (90). Red bold line: model with

exogenous wages. Black dashed line: CES production function (σ = 3.1).

perturbing the marginal tax rates are themselves U-shaped and negative, except at the very bottom

of the income distribution, thus con�rming our theoretical result of Corollary 8.

F.3.2 Alternative graphical representation

Figure 15 is the equivalent of the left panel of Figure 13 and illustrates optimal marginal tax rates as

a function of income in the optimal allocation (instead of income in the current allocation). Marginal

tax rates in this graph re�ect the policy recommendations of the optimal tax exercise which is to set

marginal tax rates at each income (rather than unobservable productivity) level. A general pattern

is that the marginal tax rate schedule is shifted to the left because individuals work less for optimal

taxes than with current taxes. This is visible most clearly for the top bracket and the bottom of the

U that start earlier.
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Figure 15: Optimal Rawlsian marginal tax rates plotted as a function of income in the optimal

allocation.
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F.3.3 Non-Rawlsian welfare function

Here we consider a social welfare function G(u) = 1
1−κu

1−κ. Figure 16 shows the optimal marginal

tax rates for two values of κ (1 and 3). As in the Rawlsian case, the optimal U-shape of marginal

tax rates is reinforced. Given that low income levels now also have positive welfare weights, there is

a force for higher marginal tax rates at low income levels. Thus, the result that marginal tax rates

should be higher at the bottom is stronger than in the Rawlsian case, because (i) the magnitude of

this e�ect is larger, and (ii) it holds for a broader range (up to $50,000). The CES parameter in the

�gures is σ = 3.1.
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Figure 16: Optimal marginal tax rates for the welfare function G(u) = u1−κ

1−κ . Left panel: κ = 1.

Right panel: κ = 3.

F.3.4 Alternative speci�cations of the Translog production function

We now consider optimal Rawlsian marginal tax rates for all four Translog cases described in Section

F.2. The results are illustrated in Figure 17. The shape of marginal tax rates is very similar for all

four cases. Thus the quantitative implications for optimal taxes obtained in the main body for our

baseline speci�cation of the Translog production function are robust to di�erent speci�cations.

F.3.5 Welfare gains

The right panel of Figure 18 plots the welfare gains of moving from the optimal taxes assuming

exogenous wages, to the optimal taxes in general equilibrium (assuming a CES production function),

as a function of the elasticity of substitution σ. These gains are expressed in consumption equivalent,

which (given our welfare criterion) corresponds to a uniform increase in the lump-sum transfer.

Naturally these gains are decreasing in σ and converge to zero as σ →∞. For low values of σ, they

can be as high as 3.5 percent, and they remain nontrivial for the whole range of plausible values of

the elasticity.
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Figure 17: Optimal Rawlsian marginal tax rates for four Translog speci�cations.
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Figure 18: Welfare gains
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