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Abstract

Over the last decades, the United States has experienced a large in-
crease in, both, income inequality and living standards. The workhorse
models of optimal income taxation call for more redistribution as inequality
rises. By contrast, living standards play no role for taxes and transfers in
these homothetic environments. This paper incorporates living standards
into the optimal income tax problem by means of non-homothetic prefer-
ences. In a Mirrlees setup, we show that rising living standards alter both
sides of the equity-efficiency trade-off. As an economy becomes richer, non-
homotheticities imply a fall in the dispersion of marginal utilities, which
weakens distributional concerns but has ambiguous effects on efficiency con-
cerns. In a dynamic incomplete-market setup calibrated to the United States
in 1950 and 2010, we quantify this new channel. Rising living standards
dampen by at least 25% the desired increase in redistribution due to rising
inequality.
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1 Introduction

Income inequality has been rising in the United States over the last decades,
as documented in Piketty and Saez (2003), among others. As a result, fiscal
redistribution has become a central topic in the policy debate, with popular calls
for higher taxes and larger transfers. The literature on optimal income taxation
characterizes the optimal tax-and-transfer (t&T ) system as a trade-off between
equity and efficiency concerns. In the workhorse models, higher inequality indeed
demands a more redistributive t&T system, as argued in Mankiw, Weinzierl, and
Yagan (2009) and Diamond and Saez (2011).

Yet, in parallel to the rising income inequality, the United States has also
experienced a very substantial increase in the standards of living. Mean income
per capita has more than tripled since the 1950s, and the share of household
expenditures spent on food has shrunk from more than 20% to less than 10%.1

Standard models of optimal taxation feature homothetic preferences and cannot
generate the observed heterogeneity in consumption baskets, both in the cross-
section and over time. Loosely speaking, they cannot capture how being poor in
the 1950s differs from being poor in the 2010s. Therefore, these models shed no
light on how rising living standards affect efficiency and distribution concerns, and
thus the optimal t&T system.

This paper incorporates living standards into the optimal income tax prob-
lem by means of non-homothetic (NH) preferences—that is, preferences featuring
heterogeneous income elasticities of demand across multiple goods. First, we ana-
lytically show how changes in living standards affect the equity-efficiency trade-off
in a static Mirrlees (1971) setup with fully flexible nonlinear taxes. Second, we
quantify the relative effects of rising living standards and rising inequality from
1950 to 2010, using two complementary approaches: the Mirrlees framework; and
a rich dynamic incomplete-market setup with flexible yet parametric nonlinear
taxes. We consistently find that rising living standards reduce the desired in-
crease in redistribution due to rising inequality by at least 25%, as measured by
transfer-to-output ratios or by the difference in average income tax rates between
the top- and bottom-income deciles.

Economic mechanisms. We mainly focus on the two recent state-of-the-art
NH preference specifications in the structural change literature, namely Comin,
Lashkari, and Mestieri (2021) and Alder, Boppart, and Müller (2022). These

1Data definitions are presented in Section 3.2.
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preferences imply heterogeneous income elasticities across goods, such that the
marginal spending composition of an additional dollar depends on the level of in-
come. As an economy grows, the share of expenditures spent on necessities falls,
capturing the rising living standards. These intratemporal spending allocation
dynamics impose restrictions on the curvature of the utility function, with im-
plications for intertemporal decisions as well: when further constrained by, e.g.,
labor supply dynamics, or by an empirically relevant level of risk aversion at one
point in time, NH preferences imply decreasing relative risk aversion (DRRA). In-
tuitively, richer households consume a smaller share of necessities, so that taking
income risks is less costly.2

This property implies that growth is not neutral for the equity-efficiency trade-
off, with two main forces. First, dispersion in marginal utilities falls, which reduces
the gains from redistributing resources from rich to poor households. As such,
rising living standards weaken distributional concerns—a force we refer to as the
distributional gains channel of growth. Second, income effects weaken, which
increases the efficiency costs of raising revenues but also decreases the efficiency
costs of paying out transfers. As such, rising living standards have ambiguous
effects on efficiency concerns—forces we refer to as the efficiency costs channel of
growth.

Two complementary approaches. These mechanisms are first formalized in
a Mirrleesian setup. In particular, we consider fully nonlinear taxes in a static
environment. We build on the analytical representation of optimal nonlinear taxes
developed in Heathcote and Tsujiyama (2021) to formally decompose how living
standards affect, both, efficiency costs and distributional gains of raising marginal
tax rates along the income distribution. A calibration of this setup further allows
us to quantify those different channels.

Second, we consider a dynamic incomplete-market setup. We follow a Ramsey
approach and restrict the t&T system to belong to a flexible parametric class.
While the Mirrleesian setup is powerful in imposing no restrictions on the t&T

system, the dynamic environment allows to discipline preferences from intra- and
intertemporal choices, with a meaningful notion of risk aversion. In addition, it
allows to separate income from expenditure distributions, crucial to disentangle
efficiency from distributional concerns. The dynamic setup is further used to
discipline the calibration of the Mirrleesian setup mentioned above.

2The DRRA property is also consistent with empirical micro evidence beyond the structural
change literature. See Section 3.3.4 for a description of the empirical literature on risk aversion
and the intertemporal elasticity of substitution (IES) over time and in the cross-section.
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The logic of the quantitative exercise is as follows. First, we calibrate the
model to the U.S. economy in 1950. We derive inverse optimum Pareto weights,
which make the calibrated 1950 t&T system optimal. Keeping those weights
constant, we then compute the optimal t&T system for two cases. First, we only
account for the rise in inequality until 2010, as a benchmark comparable to the
literature. Second, we compute the optimal t&T system when also accounting for
rising living standards. We interpret the difference in the optimal t&T systems
as the standard-of-livings channel. We now describe our calibration of the model
and preview our quantitative results.

Quantification. We calibrate the dynamic model to be consistent with key
micro- and macro-level developments of the U.S. economy from 1950 to 2010,
with the NH CES (constant elasticity of substitution) preferences of Comin et
al. (2021) as our benchmark preference specification. Key for distributional con-
cerns, the model is consistent with the dynamics of inequality. Regarding the
non-homotheticities, we use consumption and labor supply patterns in the cross-
section and the time series to discipline preference parameters, which eventually
govern the degree of DRRA in the calibrated economy. Intertemporal decisions in
the dynamic model allow further validation of the degree of DRRA given by the
NH preferences. The implied degree of DRRA is modest, well within the range of
plausible estimates from fields as diverse as portfolio choice, consumption Euler
equation estimation, and development.

We then evaluate the effect of rising living standards on the optimal t&T system
relative to the effect of rising inequality, using both approaches. In isolation, the
large rise in inequality calls for a more redistributive t&T system, with the optimal
transfer-to-output ratio going up by more than three percentage points in the
dynamic Ramsey approach—and by more than six percentage points in the static
Mirrlees framework. Accounting for the rise in living standards, the optimal t&T

system still redistributes more in 2010 than in 1950, but to a lesser degree. Rising
living standards dampen the optimal increase in transfer-to-output ratios by 35%
and 40% in the Ramsey and Mirrlees frameworks. Rising living standards also
dampen the optimal increase in the difference between top-10% and bottom-10%
average t&T rates by about 25% in both frameworks.

We further use the Mirrlees setup for two purposes. First, we use the analytical
income tax formula to quantify the different channels driving the effects of the
rising living standards. We find that almost the whole effect stems from the
distributional gains channel of growth. Second, we conduct a series of robustness
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checks, using alternative calibrations with the NH CES preferences, as well as the
preference specification of Alder et al. (2022). All experiments suggest effects of
standards of living at least as large as in the benchmark.

Summing up, we consistently find that the rising living standards dampen by
at least 25% the desired increase in redistribution due to rising inequality, and
most of this effect comes from weakening distributional concerns.

Related literature. Our work relates to both the public economics tradition,
which studies optimal nonlinear income taxation (Heathcote and Tsujiyama 2021;
Saez 2001), and the macroeconomic tradition, which focuses on restricted tax in-
struments in richer environments (Conesa and Krueger 2006; Heathcote, Storeslet-
ten, and Violante 2017). We connect these approaches with the notion of standards
of living by incorporating growth and NH preferences into the analysis.

In doing so, we contribute to an emerging literature on optimal taxes with NH
preferences. Oni (2023) analyzes the optimal progressivity of a loglinear income
tax function in a static general equilibrium model with non-homotheticies. In
that setup, lower progressivity increases demand for luxuries; the relative price
of necessities thus falls, which is beneficial for the poor. As a result, optimal
progressivity falls, from 0.07 with homothetic preferences to 0.03 with NH prefer-
ences. Jaravel and Olivi (2022) consider NH preferences in a Mirrleesian income
taxation problem comparable to ours, and focus on the effects of heterogeneous
inflation rates—that is, of changes in relative prices, with unequal incidence across
the income distribution. In their setup, a rise in the price of necessities reduces
optimal redistribution. Indeed, a rise in the price of a good reduces the value of
a marginal dollar, as consumption baskets become more expensive. A rise in the
price of necessities disproportionately affects the consumption baskets of the poor,
reducing the value of redistributing a dollar from the rich to the poor. We adopt
a different focus and analyze the effects of growth, modeled as a homogeneous fall
in all prices.3

More related in terms of motivation are the works of de Magalhaes, Martorell,
and Santaeulàlia-Llopis (2022) and Tsujiyama (2022), which explore optimal tax-
ation as an economy develops using NH preferences but abstracting from hetero-
geneous income elasticities across goods.4

3For calibration purposes, we also account for changes in relative prices in our quantitative
exercise; Section 3.4 conducts a decomposition exercise to isolate the effects of relative price
changes in our setup.

4de Magalhaes et al. (2022) show that, when considering both private and public transfers,
risk-sharing tends to be larger in developing economies than in rich countries, and further discuss
optimality of this finding in a one-good model with Stone-Geary preferences. Tsujiyama (2022)
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Finally, our paper complements the literature addressing to what extent the
rise in inequality in the United States justifies an increase in tax progressivity.
Considering the United States between 1980 and 2016, Heathcote, Storesletten,
and Violante (2020) find that the inequality channel is neutralized by increasing
efficiency costs of tax progressivity resulting from skill-biased technical change.
Relatedly, Brinca, Duarte, Holter, and Oliveira (2022) reach a similar conclusion
in a quantitative setup accounting for heterogeneous returns across occupations.5

Our paper puts into perspective the focus on changes in inequality, i.e. on second
moments of the income distribution, by accounting for concurrent large changes
in living standards, i.e. in first moments of the income distribution.

2 Static Model: Theoretical Analysis

We consider a continuum of heterogeneous households with labor productivity θ,
which is distributed according to a probability density function f(θ) and cumu-
lative density function F (θ). Households supply labor n and earn gross income
y = θn. This results in expenditure e = y − T (y), where T captures the t&T

system. Households allocate their expenditures to J different goods. We denote
as c = (c1, . . . , cJ) the basket of consumption goods. We assume that utility is of
the form

U(c)−B
n1+φ

1 + φ
,

where B > 0 and φ−1 governs the Frisch elasticity. Additive separability allows to
separate the labor/expenditure choice from the consumption composition choice,
and thus to decompose the optimization problem into two steps: Step 1 solves for
the optimal labor/expenditure level, while Step 2 optimally allocates the expen-
diture across different goods.6

V (θ; T (·),Λ, p) ≡ max
e,n

u(e; Λ, p)−B
n1+φ

1 + φ
s.t. e = nθ − T (nθ) , (Step 1)

u(e; Λ, p) ≡ max
{cj}j

U(c) s.t.
∑
j

pj
Λ
cj = e. (Step 2)

considers how subsistence self-employment, which is more prevalent in developing economies,
affects the equity-efficiency trade-off, also in a one-good environment.

5Considering a more recent period of 2004-2015, Jaravel and Olivi (2022) also question the
typical implication of rising inequalities on optimal redistribution. The heterogenous inflation
rates, which were higher for luxuries than for necessities, call for more regressive taxes and offset
the inequality channel.

6The additive separability also implies that the Atkinson-Stiglitz theorem holds in this envi-
ronment. Hence, the optimal tax system implies uniform commodity taxes.
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Let p denote the vector of relative prices—i.e. pj = 1 w.l.o.g. in one sector j.
We assume p to be constant. Instead we consider changes in Λ, which homoge-
neously scales the level of prices. As Λ grows by g, real expenditures grow by g

for a given level of nominal expenditures—i.e. we model growth as a fall in prices.
Thus, we refer to Λ as the level of the economy. With NH preferences, a higher
Λ implies a shift of consumption baskets away from necessities. This is what we
define as the rising living standards.

Importantly, Λ and p only affect the labor supply decision through their impact
on ue(e; Λ, p). This insight is very useful to analyze the implications of Λ on
the optimal t&T system in Section 2.3. Once we characterize the properties of
u(e; Λ, p), we can focus on (Step 1).

Section 2.1 introduces the two NH preferences we consider throughout the
paper. Section 2.2 characterizes implications of U(c) on the curvature of u(e; Λ, p).
Section 2.3 analyzes how these properties alter the optimal t&T system.

2.1 Heterogenous Expenditure Elasticities

We measure rising living standards by changes in consumption baskets as an econ-
omy grows. There is ample evidence that Engel curves, depicting how spending
on different goods varies with income, are not linear, and consumption baskets are
heterogeneous—both over time and in the cross-section.7 In other words, expendi-
ture elasticities of demand are heterogeneous across goods.8 To capture the rising
living standards, we thus consider utilities satisfying the following assumption.

Assumption 1. Assume that U(c) is such that expenditure elasticities are het-
erogeneous across goods. That is,

∂ log ci
∂ log e

̸= ∂ log cj
∂ log e

when i ̸= j.

There exist different functional forms for U(c) that are consistent with this
assumption. We focus on the two recent state-of-the-art NH preference specifica-
tions in the structural change literature, namely Comin et al. (2021) and Alder
et al. (2022).

7See Aguiar and Bils (2015), Boppart (2014), and Herrendorf, Rogerson, and Valentinyi
(2014), among many others.

8We refrain from using the term income elasticities, which has been often used in this context.
Indeed, after-tax incomes are relevant in a setting with income taxes. In the static model, after-
tax income and expenditure are equivalent. For the dynamic version of the model, this is no
longer the case. Thus, we prefer to refer to elasticities w.r.t. expenditure.

6



Case 1. (NH CES Preferences)

We first describe the NH CES preferences that go back to Hanoch (1975) and
have been introduced into a multi-sector growth model by Comin et al. (2021).
NH CES preferences are defined over the basket of consumption goods c by:

U(c) =
C(c)1−γ

1− γ
,

where the consumption aggregator C(c) is implicitly defined by the following equa-
tion:

J∑
j

(ΩjC(c)εj)
1
σ c

σ−1
σ

j = 1, (1)

with γ ≥ 0, and σ > 0, Ωj > 0 ∀j, ϵj > 0 (ϵj < 0) if σ < 1 (σ > 1) ∀j. Preferences
collapse to a homothetic CES when εj = 1− σ ∀j.

For this utility function, one obtains the following elasticities of consumption
w.r.t. expenditure:

∂ log cj
∂ log e

= σ + (1− σ)
εj
ε̄
,

where ε̄ =
∑J

j=1 ωjεj and ωj are the expenditure shares of the different goods.
Goods j with εj < ε̄ are necessities, as their expenditure elasticities are lower than
unity. Goods j with εj > ε̄ are luxuries. As opposed to Stone-Geary preferences,
non-homotheticities do not vanish: differences in ∂ log cj/∂ log e also prevail as e

keeps growing.9

Comin et al. (2021) show that one can express the expenditure function as

e =

(∑
j

ΩjC(e; Λ, p)εj (pj/Λ)1−σ

) 1
1−σ

, (2)

where C(e; Λ, p) denotes the optimal consumption aggregator given expenditure e.
Throughout the rest of the paper, we focus on the case where σ < 1, appro-

priate to capture changes in consumption baskets across broad sectors reflecting
rising living standards.

Case 2. (Intertemporally Aggregable (IA) Preferences)

The second state-of-the-art NH preferences are the IA preferences introduced
9Note that {εj} can be rescaled, as shown in Comin et al. (2021). See Appendix B.1.1 for

formal details in our setting.
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by Alder et al. (2022). These preferences are directly defined over expenditure:

u(e; p,Λ) =
1

1− γ

(
1

B(p∗)

(
e−

∑
j

p∗j c̄j︸ ︷︷ ︸
A(p∗)

))1−γ

−D (p∗) , with p∗ ≡ p

Λ
, (3)

where B(p∗) =
(∑

j Ωj

(
p∗j
)1−σ

) 1
1−σ with σ > 0,

∑
j∈J Ωj = 1, and Ωj ≥ 0 ∀j;

D(p∗) homogenous of degree zero; and γ ∈ (0, 1). IA preferences are homothetic
when A(p∗) = 0 and D(p∗) = 0.

Alder et al. (2022) show that these preferences allow for intertemporal aggrega-
tion, and nest both: generalized Stone-Geary (Herrendorf et al. 2014), through the
A term; and price independent generalized linearity (PIGL) preferences (Boppart
2014), through the D term.

2.2 Non-Homotheticities and Marginal Utilities

We now derive implications of heterogeneous expenditure elasticities on the cur-
vature of the indirect utility function u(e; p,Λ), which contains all properties of
non-homotheticities relevant for the optimal income taxation problem.

Intratemporal allocations provide information on expenditure elasticities across
goods. In the vein of Crossley and Low (2011), we argue that intratemporal allo-
cations are informative of the curvature of u, and thus further impose restrictions
on intertemporal allocations as well.10 Crossley and Low (2011) prove in particu-
lar that the rich degree of heterogeneity in consumption baskets along the income
dimension rules out the possibility that the IES is constant in income. Echo-
ing a theoretical literature, we argue next that NH preferences typically imply
DRRA.11,12

NH CES preferences and DRRA. We start with Preferences 1. We denote
by γ(e; Λ, p) the coefficient of relative risk aversion at expenditure e. Risk aversion
depends on both the consumption aggregator C and the curvature parameter γ:

10Quoting their conclusion: “The importance of our result is in refuting the belief that proper-
ties of intertemporal allocations can be independent of the properties of within-period allocation.
This belief underpins the use of the constant-IES assumption in much modern macroeconomics.”
(Crossley and Low 2011, p.104).

11See for instance Browning and Crossley (2000): “luxuries are easier to postpone,” implying
an increasing IES. See also Hanoch (1977) and Stiglitz (1969) for additional discussions of how
the shapes of Engel curves in the data are inconsistent with a constant IES.

12We consider time-separable preferences for which the IES is the inverse of RRA. Key to our
analysis is to characterize how the curvature of static utility changes as expenditure grows.
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γ(e; Λ, p) ≡ −ueee

ue

= γ
Ce(e; Λ, p)e
C(e; Λ, p)

− Cee(e; Λ, p)e
Ce(e; Λ, p)

, (4)

where Ce and Cee can be obtained through implicit differentiation of the expen-
diture function. Under a homothetic parameterization, C(e; Λ, p) ∝ e and prefer-
ences feature CRRA: γ(e,Λ, p) = γ ∀e.

Intratemporal allocations of expenditure across goods discipline the parameters
{εj} and σ, thereby determining C. Given C(e; Λ, p), the parameter γ pins down
the entire schedule of risk aversion—that is, both the level of risk aversion and
how it varies with expenditures.

The first term in equation (4) multiplies the curvature parameter γ with the
elasticity of the consumption aggregator C with respect to expenditures. As stated
below in Lemma 1, it is unambiguously decreasing in e when εi ̸= εj, generating
a force towards DRRA. The second term captures the elasticity of Ce with respect
to expenditures, which may be increasing or decreasing in e. A larger curvature
parameter γ not only increases the level of risk aversion, but also amplifies the
first term which generates DRRA. Thus, DRRA is always satisfied for sufficiently
high levels of risk aversion.

Lemma 1. Preferences 1 satisfy DRRA at expenditure e—that is, γe(e; Λ, p) < 0—
iff

γ >
∂

∂e

(
Cee(e; Λ, p)e
Ce(e; Λ, p)

)(
∂

∂e

(
Ce(e; Λ, p)e
C(e; Λ, p)

))−1

.

Proof. The lemma follows from

εi ̸= εj ⇒
∂

∂e

(
Ce(e; Λ, p)e
C(e; Λ, p)

)
< 0 ∀e, (5)

an inequality which is proved in Appendix A.1.1.

Corollary 1. Consider two polar cases of Preferences 1.

• Let J = 2, with ε2 = 1, ε1 = ε < 1 w.l.o.g. Then, Preferences 1 satisfy
DRRA if: (i) sufficient condition: γ > 2; (ii) necessary condition: γ > ε1.

• Let there be a continuum of goods, and distributional assumptions as in Bohr,
Mestieri, and Yavuz (2023). Then, Preferences 1 admit positive risk aversion
∀e only if γ ≥ 1, and satisfy DRRA iff γ > 1.

This corollary reveals further the role of the curvature parameter for the DRRA
property. With a continuum of goods, γ is the only relevant statistic, with CRRA
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for γ = 1 and DRRA for γ > 1; risk aversion turns negative for some values of e
when γ < 1 . Discreteness can obscure this relationship between γ and DRRA,
creating tighter conditions for some levels of expenditures (sufficient condition
larger than 1) and looser conditions for others (necessary condition weaker than
1). Yet, the main force remains: a larger γ always favors DRRA.

Given estimates for {εj} and σ, the curvature parameter γ can be disciplined
by alternative moments on the level of risk aversion or dynamics of labor supply.
In particular, one can use long-run risk aversion, denoted γ̄ and equal to

γ̄ = 1 + (1− σ)
γ − 1

εJ
, (6)

as shown in Appendix A.1.1. Easier to measure empirically, risk aversion at any
point in time also uniquely pins down γ—this is the approach we follow in the
quantitative model of Section 3, where we calibrate γ to match an average risk
aversion of 1 in 2010. Finally, a large body of evidence has argued that aggregate
labor supply falls with income, both over time and across countries.13 Given
estimates for {εj} and σ, a level of γ translates into a certain fall in aggregate
labor supply between two points in time.14

We assume three goods in the quantification of Section 3, and borrow estimates
of expenditure elasticities and the elasticity of substitution between goods from
Comin et al. (2021). Targeting an average risk aversion of 1 in 2010, the model
implies a fall in aggregate labor supply over time consistent with evidence, and
satisfies DRRA as shown in Figure 1 further below in Section 3.3.4. More generally,
DRRA is a property that consistently holds quantitatively.

IA preferences and DRRA.

Lemma 2. Preferences 2 satisfy DRRA iff A(p) > 0.

Proof. See Appendix A.1.2.

Corollary 2. Preferences 2 satisfy CRRA under: (i) homothetic parameteriza-
tions; and (ii) PIGL parameterizations.

For IA preferences, the DRRA property emerges from the subsistence term
A. Interestingly, A(p) > 0 is a necessary condition for, both, DRRA and the fall

13See Section 3.3.2 for a summary of the literature.
14At a broader level, a literature has argued that aggregate labor supply falling with income

over time or across countries provide direct support for NH preferences (Bick, Fuchs-Schündeln,
and Lagakos 2018; Restuccia and Vandenbroucke 2013).
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in labor supply over time measured in the data. In the quantification of the IA
preferences in Section 4.3, the curvature parameter yields the same long-run risk
aversion as with the NH CES preferences, and the calibration of the {c̄j} is such
that A(p) > 0, and thus, DRRA.

Taking stock. NH preferences generally feature DRRA, a property which will
be key to analyze how optimal t&T systems vary with living standards. As living
standards rise, the dispersion of marginal utilities will fall under DRRA, altering
both distributional gains and efficiency costs of taxation.

2.3 Optimal Incomes Taxes

We consider a social planner that assigns Pareto weights w(θ) to households of
type θ and optimally chooses a fully nonlinear t&T system T (·; Λ) in the spirit
of Mirrlees (1971). We derive an optimal income tax formula in this environment.
We formally show that optimal taxes are independent of the level of the economy
Λ when preferences are homothetic. Then, we analyze the effect of changes in
Λ on optimal taxes when preferences are NH—holding fixed relative prices, the
distribution of skills, and the Pareto weights. Throughout this section, we suppress
the constant relative price vector p as an argument of tax and policy functions for
readability.15

The government’s problem is given by

max
T (·;Λ)

∫ θ

θ

V (θ; T (·; Λ),Λ)w(θ)f(θ)dθ s.t.
∫ θ

θ

T (n(θ; T (·; Λ),Λ)θ; Λ)f(θ)dθ ≥ G,

subject to optimal household behavior given the tax function:

n(θ; T (·; Λ),Λ) ≡ argmax
e,n

u(e; Λ)−B
n1+φ

1 + φ
s.t. e = nθ − T (nθ; Λ) ,

where G denotes exogenous spending and V (θ; T (·; Λ),Λ) is defined in (Step 1).
To ease notation we replace ue(e(θ; Λ); Λ) with ue(θ; Λ), and omit T (·; Λ) as argu-
ments of household policy functions when possible.

We now state the solution to the optimal tax problem in the following lemma.

Lemma 3. For each type θ∗, the optimal marginal tax rate T ′(y(θ∗; Λ); Λ) is
15In a similar formal environment, Jaravel and Olivi (2022) consider a different question: the

effects of heterogenous inflation rates on optimal income taxes. For that purpose, they locally
assume uee = 0 at initial prices for most of their analysis, so that a uniform change in prices has
no effect on optimal redistribution by construction.
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characterized by E(θ∗; T ,Λ) = D(θ∗; T ,Λ), where:

E(θ∗; T ,Λ) = 1−
1− T ′(y(θ∗;Λ);Λ)

1−T ′(y(θ∗;Λ);Λ)
1

1+φ
θ∗f(θ∗)
1−F (θ∗)

+
∫ θ̄

θ∗
T ′(y(θ; Λ); Λ)η(θ; Λ) dF (θ)

1−F (θ∗)

1 +
∫ θ̄

θ
T ′(y(θ; Λ); Λ)η(θ; Λ)dF (θ)

,

D(θ∗; T ,Λ) = 1−
∫ θ̄

θ∗
ue(θ; Λ)w(θ)

dF (θ)
1−F (θ∗)∫ θ̄

θ
ue(θ; Λ)w(θ)dF (θ)

,

and income effects of type-θ worker η(θ; Λ) ≡ dy(θ; Λ)/dT (0; Λ) are given by

η(θ; Λ) =
γ(θ; Λ)y(θ;Λ)

e(θ;Λ)

φ+ γ(e; Λ)y(θ;Λ)
e(θ;Λ)

(1− T ′ (y(θ; Λ); Λ)) + T ′′(y(θ;Λ);Λ)y(θ;Λ)
1−T ′(y(θ;Λ);Λ)

, (7)

where γ(θ; Λ) ≡ γ(e(θ; Λ); Λ) to ease notation.

Proof. See Appendix B.1.2.

This derivation is a standard exercise.16 As in Heathcote and Tsujiyama (2021),
we characterize the optimal marginal tax rate at income y(θ∗,Λ) as the one equal-
izing distributional gains D(θ∗; T ,Λ) to efficiency costs E(θ∗; T ,Λ).

Distributional gains. D(θ∗; T ,Λ) captures the distributional gains from in-
creasing the marginal tax at income y(θ∗; Λ) and redistributing the additional
revenues lump-sum. The numerator in the fraction captures the utility loss from
the higher taxes paid by workers of type θ ≥ θ∗. The denominator in the fraction
captures the utility gain from the larger lump-sum transfer to all workers.

When all workers are identical and Pareto weights are equalized, D(θ∗; T ,Λ) =

0: there is no gain from redistributing. Instead, with heterogeneous workers, the
average marginal utility of workers above θ∗, in the numerator, is typically lower
than the average marginal utility across the entire distribution, in the denominator.
Thus, D(θ∗; T ,Λ) > 0: there are positive gains from redistributing. The larger
the dispersion in marginal utilities ue, the larger the term D(θ∗; T ,Λ) becomes.

Efficiency costs. E(θ∗; T ,Λ) captures the efficiency costs from increasing the
marginal tax at income y(θ∗; Λ) and redistributing the additional revenues lump-
sum. The numerator in the fraction captures the efficiency cost of raising revenue
from households with θ ≥ θ∗, which depends on two forces: (i) with positive Frisch
elasticity 1/φ > 0, workers with type θ∗ reduce labor supply in response to the

16As formalized in Golosov, Tsyvinski, and Werquin (2014), this result can be derived with a
mechanism-design approach or with a tax-reform approach. We follow the latter.
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higher marginal tax;17 (ii) with positive income effects η(·; Λ) > 0, workers with
type θ > θ∗ increase their labor supply in response to the higher average tax rate.
The denominator in the fraction captures the efficiency cost of redistributing the
additional revenues: with positive income effects, all workers decrease their labor
supply in response to the larger lump sum. Hence, larger income effects have am-
biguous effects: they lower the efficiency cost of raising taxes in the numerator, but
increase the efficiency costs of raising the lump-sum transfer in the denominator.

2.3.1 Benchmark: Homothetic Preferences

We first consider as a benchmark the homothetic parameterizations of Prefer-
ences 1 and 2. As discussed in Section 2.2, they satisfy CRRA. Proposition 1
formally states the irrelevance of the level of the economy for the optimal t&T

system. We describe how the optimal allocation changes with growth and fully
characterize the optimal tax reform that implements the new allocation.

Tax Reform. Consider a marginal increase in Λ by dΛ, and let g ≡ dΛ/Λ. We
denote a tax reform that accompanies this increase in Λ by

∀y : dT (y; Λ) ≡ lim
g→0

1

g
{T (y; Λ(1 + g))− T (y; Λ)} .

For any variable v(θ; T ,Λ), we denote its relative change due to growth g and the
accompanying tax reform dT as

v̂(θ; T ,Λ, dT ) ≡ lim
g→0

1

g

v
(
θ; T (·; Λ) + g × dT (·; Λ),Λ(1 + g)

)
v
(
θ; T (·; Λ),Λ

) − 1. (8)

Proposition 1. Assume preferences u(e; Λ) satisfy CRRA in Preferences 1 and 2.
The optimal tax reform, which we denote dT̃ , to a marginal change in Λ is char-
acterized by:

∀y : dT̃ (y; Λ) = (T (y; Λ)− T ′(y; Λ)y)α, (9)

where α ≡ (1− γ)/(φ+ γ). The resulting allocation is such that:

1. Expenditures and incomes grow at constant rate α ∀θ:

∀θ : ŷ(θ; T ,Λ, dT̃ ) = ê(θ; T ,Λ, dT̃ ) = α.

17As discussed in Appendix B.1.2, one can express the tax formula in terms of the distribution
of income instead of types. When doing so, the compensated labor supply elasticity appears
explicitly in the formula, and it does change with Λ. However, the density of income also changes
with Λ, so that the two effects cancel out. This is why only the constant Frisch elasticity φ−1

appears in the formula with types that we use in Lemma (3).
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2. The optimal marginal and average tax rate of a type-θ household do not
change:

∀θ : T ′(y(θ; Λ(1 + g)); Λ(1 + g)) = T ′(y(θ; Λ); Λ)

and
∀θ :

T (y(θ; Λ(1 + g)); Λ(1 + g))

y(θ; Λ(1 + g))
=

T (y(θ; Λ),Λ)

y(θ; Λ)
.

Proof. See Appendix A.2.2.

Proposition 1 characterizes the optimal tax reform (9) in response to growth.
At the new t&T system, households’ incomes and expenditures optimally grow
at a constant rate α, which can be positive or negative depending on the relative
strength of income and substitution effects. Given the households’ optimal behav-
ior, both marginal and average optimal t&T rates remain constant for each type
θ. Pre-tax and after-tax income inequality remain constant.

To provide intuition on the irrelevance of growth for the optimal t&T system,
we build on the optimal tax formula in Lemma 3. We first show that both distri-
butional gains and efficiency costs are unchanged with growth when income and
expenditure policies grow at a constant rate.

We start with distributional gains. As expenditures grow at the same rate ∀θ,
marginal utilities also grow at a constant rate ∀θ with CRRA preferences. Thus,
the welfare gains from redistributing from workers above θ∗ to those below θ∗ are
unaffected: D̂(θ∗; T ,Λ, dT̃ ) = 0 ∀θ∗.

We turn to efficiency costs. In principle, efficiency costs may change with Λ as
income effects defined in equation (7) do depend on Λ. Yet, income effects become
independent of growth under the optimal tax reform. Income effects are a function
of: (i) income-over-expenditure ratios, which are constant as both terms grow at
the same rate; (ii) marginal rates, which are constant at the optimal tax reform
for each θ; and (iii) T ′′ × y, which is shown in Appendix A.2.2 to be constant for
each θ. Thus, η is independent of Λ under the optimal tax reform:

η
(
θ; T (·; Λ),Λ

)
= η
(
θ; T (·; Λ) + g × dT̃ (·; Λ),Λ(1 + g)

)
∀θ,

and thus efficiency costs are also unchanged with growth: Ê(θ∗; T ,Λ, dT̃ ) = 0 ∀θ∗.
As a consequence, the tax reform described in Proposition 1 is optimal, to

the extent that it is consistent with household variables growing at the same
rate α for all θ. Completing the proof requires to show that given the optimal
tax reform at Λ(1 + g), household optimal policies indeed adjust by a constant
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factor α = (1− γ)/(φ+ γ)—see Appendix A.2.2. Interestingly, under homothetic
preferences, the economy grows at the same rate as it would in a Laissez-Faire
allocation, as we discuss in Appendix B.1.3.

Summing up, with homothetic parameterizations, which imply constant ex-
penditure shares—thus abstracting from the rise in living standards—and satisfy
CRRA, growth leaves both marginal and average t&T rates unchanged.

2.3.2 Accounting for living standards

We now consider the NH parameterizations of Preferences 1 and 2 which satisfy
the DRRA property. A change in the level of the economy Λ alters the optimal
t&T system through three channels: (i) a distributional gains channel; (ii) an
efficiency costs channel; and (iii) an income distribution channel.

To isolate these channels, we build on Proposition 1 in two steps. First, we
assume that, as with homothetic preferences, incomes and expenditures grow at
the same rate α for all θ, so that, relative to their mean, income and expenditure
distributions do not change with growth. In that setup, we show how growth
alters both distributional gains and efficiency costs of taxation. Then, we further
show how the distributions of income and expenditure change.

Step 1: Holding fixed the income distribution.

Proposition 2 (Distributional gains channel). Assume preferences u(e; Λ) satisfy
DRRA. Consider the tax reform dT̃ , and assume incomes and expenditures grow
at a constant rate α ∀θ. Distributional gains decrease with growth:

∀θ∗ : D̂(θ∗; T ,Λ, dT̃ ) = (1 + α)
[
Eu [γ(θ; Λ)]− Eu [γ(θ; Λ)|θ < θ∗]

]
< 0,

where Eu is the expectation using fu(θ) ≡ w(θ)ue(θ; Λ)f(θ)/
∫
θ
w(θ)ue(θ; Λ)f(θ)dθ.

Proof. See Appendix A.2.3.

Formally, D̂ is negative as risk aversion decreases in expenditure, and thus in
θ: average risk aversion over the entire population is smaller than the risk aversion
of workers with θ < θ∗, ∀θ∗. Intuitively, when preferences feature DRRA, the ratio
of marginal utilities is no longer independent of growth, even with expenditures
growing at the same rate across workers. As the economy grows, the dispersion
in marginal utilities decreases, and thus distributional gains from redistributing
from the rich to the poor decrease.

Proposition 3 (Efficiency costs channel). Assume preferences u(e; Λ) satisfy
DRRA. Consider the tax reform dT̃ defined in (9), and assume incomes and expen-
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ditures grow at a constant rate α ∀θ. Income effects decrease with growth:

∀θ : η(θ; T + g × dT̃ ,Λ(1 + g)) < η(θ; T ,Λ), (10)

which affects efficiency costs of taxation in two ways: (i) the efficiency costs of
raising tax revenue increase; (ii) the efficiency costs of distributing a lump sum
decrease. As such, Ê(θ∗; T ,Λ, dT̃ ) can be positive or negative.

Proof. See Appendix A.2.4.

In contrast to the CRRA benchmark, income effects weaken with growth. This
implies that the efficiency cost of raising revenue increases, but also that the
efficiency cost of paying out transfers decreases. The effect of growth on the
efficiency costs of taxation is ambiguous and depends e.g. on how marginal tax
rates vary with income in the initial optimal allocation.

Step 2: Accounting for changes in the income distribution. When NH
preferences feature DRRA, growth not only changes distributional gains and effi-
ciency costs of taxes, but also directly changes income and expenditure distribu-
tions. Indeed, the growth rate of income now depends on θ.

Proposition 4 (Income distribution channel). Assume preferences u(e; Λ) satisfy
DRRA. Consider the tax reform dT̃ defined in (9). Then, the change in income
is given by

∀θ : ŷ(θ; T ,Λ, dT̃ ) =
1− γ

φ+ γ

(
1 +

γ − γ(θ; Λ)

d(θ; T ,Λ)

)
where d(θ; T ,Λ) is made explicit in Appendix A.2.5.

Proof. See Appendix A.2.5.

Proposition 4 nests the CRRA case: when γ(θ; Λ) = γ, the change in income is
independent of θ. With DRRA, income changes depend on both risk aversion and
d(·), where the latter is a function of T ′′. The term γ − γ(θ; Λ) generates a force
towards an increase in income inequality: with growth, labor income increases by
more (or decreases by less) for high-θ than for low-θ workers. In principle, d(·)
could overcome this force, depending on the properties of T . For the standard
loglinear tax function used in Feldstein (1969), and Heathcote et al. (2017), we
show in Appendix A.2.5 that ŷ(θ; T ,Λ, dT̃ ) is unambigously increasing in θ.

Taking stock. To sum up, we have identified three channels of an increase in
the standards of living on the optimal t&T system:
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1. Distributional gains channel (Proposition 2). Higher standards of living
lower the distributional gains of taxes. This channel calls for less redistribu-
tion as an economy grows.

2. Efficiency costs channel (Proposition 3). Higher standards of living raise
the efficiency costs of raising revenue but lower the efficiency costs of dis-
tributing tax revenue back in form of lump-sum transfers. This channel has
an ambiguous effect on optimal redistribution as an economy grows.

3. Income distribution channel (Proposition 4). Higher standards of living
typically increase income inequality, and thus expenditure inequality, as la-
bor supply of high-θ workers increases by more (or decreases by less) with
growth. This channel calls for more redistribution as an economy grows.

Which of these effects dominates is a quantitative question that we explore in
detail next. Anticipating the results, we will find that the distributional gains
channel dominates: the optimal t&T system becomes less redistributive with
growth.

3 Quantitative Models

We now move to the quantification of the effects of rising living standards on the
optimal t&T system. For this purpose, we use two complementary approaches.

We start with a Ramsey approach and describe optimal parametric t&T sys-
tems in a rich dynamic incomplete-market setup. A dynamic model offers two
main advantages. First, precautionary savings endogenously generate a distribu-
tion of expenditure given the observed distribution of income, which is crucial
to disentangle efficiency from distribution concerns. Second, a model with sav-
ings generates dynamic moments such as MPCs and wealth effects, for which we
have empirical counterparts, and which are intrinsically related to risk aversion.18

Thus, a dynamic model is useful to discipline the DRRA property arising from
NH preferences, alongside consumption composition.

We then use a Mirrlees approach in a static setup. This approach offers two
advantages. First, it allows to check that the results are not driven by the specific
t&T functional forms assumed in the Ramsey exercise. Second, it allows to build
on the optimal tax formula in Lemma 3 and decompose the relative importance
of the three channels of growth identified in Section 2.

18We derive an explicit relationship between MPCs, wealth effects, and risk aversion in equa-
tion (13) in Section 3.3.3.
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Section 3.1 formally introduces the dynamic model. Section 3.2 describes the
calibration of preferences, growth, and changes in inequality in the dynamic model
to the U.S. economy from 1950 to 2010. Section 3.3 checks the model implica-
tions of non-homotheticities on static decisions—that is, consumption and labor
patterns—as well as on dynamic decisions—that is, wealth effects and MPCs. We
further compare the implied level of DRRA in the model to empirical estimates
provided in the literature. Finally, Section 3.4 addresses the calibration of the
static model.

3.1 Dynamic Model: Setup

The dynamic model is a standard incomplete-market setup. Households are char-
acterized by their productivity θ and holdings of a risk-free bond a. The household
problem reads as follows:

V (a, θ; Λ, p) = max
e,a′,n

{
u(e; Λ, p)−B

n1+φ

1 + φ
+ βEθ′ [V (a′, θ′; Λ, p) |θ]

}
s.t. e+ a′ ≤ θn+ (1 + r)a− T (θn) , a′ ≥ 0,

(11)

where the utility function u will be NH. Households discount the future with
discount factor β and face a no-borrowing constraint. Productivity θ follows a
stochastic process. The t&T system T (·) is modeled as a parametric function of
labor income. We describe all functional forms in the calibration section. The
problem is cast in partial equilibrium, with the interest r and the vector of prices
taken as exogenous.

3.2 Dynamic Model: Calibration

We calibrate the model in two points in time: 1950 and 2010. We use NH CES
preferences with three sectors: agriculture/food, manufacturing/goods, and ser-
vices. Rising living standards result from falling prices, disciplined by GDP per
capita growth and changes in relative prices. Rising income inequality results
from changes in the distribution of idiosyncratic productivity shocks. Taxes and
transfers describe the U.S. fiscal system in 1950 and 2010. Table 1 presents all
parameter values while Table 2 summarizes all targets.

3.2.1 Preferences

NH CES. The benchmark preference specification uses non-homothetic CES
preferences. We rely on the estimates of Comin et al. (2021), based on micro data
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Table 1: Parameter Values

Preferences
Discount factor β 0.957 NH CES parameters
Utility curvature γ 0.75 σ 0.3
Frisch elasticity 1/φ 0.50 (εA, εG, εS) (0.10, 1.00, 1.80)
Labor disutility B 8.34 (ΩA,ΩG,ΩS) (0.06, 1.00, 10.30)

Idiosyncratic Productivity Prices
Persistence ρθ 0.9 r 0.02
Inequality {σθ, αθ}1950 (0.27, 2.20) p∗1950 (3.03, 5.67, 1.79)
Inequality {σθ, αθ}2010 (0.30, 1.65) p∗2010 (1.00, 1.00, 1.00)

Government
Taxes {λ, τ}1950 (0.15, 0.13) {λ, τ}2010 (0.17, 0.07)
Spending {T,G}1950 (0.01, 0.07) {T,G}2010 (0.02, 0.08)

from the CEX, for the parameters εj, governing the expenditure elasticities of
demand, and σ, governing the substitutability of the different commodities. We
set σ = 0.3, εA = 0.1, εG = 1.0, and εS = 1.8. As such, agricultural products are
the necessities, with a low expenditure elasticity of demand, whereas services are
the luxury, with a high expenditure elasticity of demand. We set the parameters
Ωj of the NH CES to match aggregate sector shares in 2010, based on Herrendorf,
Rogerson, and Valentinyi (2013): 8% for agriculture, 26% for goods, and 67% for
services.19

Other preference parameters. We set the discount factor β to match a
wealth-to-income ratio of 4 in 2010 (Piketty and Zucman 2014). We fix the Frisch
elasticity at a standard value with 1/φ = 0.5 and the labor disutility parameter
B such that average labor supply in 2010 is 0.3. We target an average relative
risk aversion in 2010 of 1, a standard value in the literature that often relies on
log utility.20 This procedure yields a curvature parameter γ of 0.75—lower than
the value required by the condition in Lemma 1, which delivers γ > 1.9 for our
set of parameters to guarantee DRRA at any level of expenditures.21 Still, with
an implied long-run relative risk aversion of 0.9, this calibration delivers DRRA
at all relevant expenditure levels in our computations, as shown in Figure 1. We
discuss further the magnitude of DRRA in Section 3.3.4.

19We follow the final expenditure rather than value added approach in Herrendorf et al. (2013)
since we are modeling household expenditure behavior rather than production.

20See for instance Heathcote et al. (2017) and Saez (2001).
21We provide a robustness check for γ in Section 4.3.
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Table 2: Targeted Data and Model Moments

Moment Source Data Model

Moments related to Preferences, all 2010
Agg. wealth/income Piketty et al. (2014) 4.1 4.0
Avg. RRA Standard value 1.00 0.99
Agg. shares: A,G (%) Herrendorf et al. (2013) 7.5, 25.6 7.5, 25.6

Moments related to Prices
Change pa/pg 1950-2010 Herrendorf et al. (2013) 1.87 1.87
Change ps/pg 1950-2010 Herrendorf et al. (2013) 3.16 3.16
GDP per capita growth NIPA 3.34 3.34

Moments related to Inequality
V[log(y)] 1950, 2010 SCF+ 0.57, 0.78 0.55, 0.78

Moments related to Government
T/Y (%) 1950, 2010 OMB 1.1, 3.6 1.1, 3.6
G/Y (%) 1950, 2010 OMB, constant ratio 14.0, 14.0 14.0, 14.0
∆AMTR (%) 1950, 2010 Mertens et al. (2018) 12.9, 8.7 12.9, 8.7

3.2.2 Growth and Prices

We fix the interest rate at 2% for both years. As is standard with this class of
model, we can normalize the price vector in one period.22 We calibrate the three
prices in the other period to match three moments: aggregate growth in GDP per
capita from 1950 to 2010, and changing relative prices of agriculture and services
to goods over the same time period.

Accounting for changes in relative prices is necessary to compare the model-
implied rise in living standards, as captured by changes in sectoral expenditure
shares, to its empirical counterpart which is measured in nominal terms.23 As
discussed in Jaravel and Olivi (2022), changes in relative prices may also have effi-
ciency and distributional implications on the optimal t&T system because hetero-
geneous households consume heterogeneous baskets of goods. We quantitatively
isolate this force in a decomposition exercise in Section 4.2.

We compute aggregate growth in GDP per capita from 1950 to 2010 from
National Income and Product Accounts (NIPA) to be equal to 3.3. We compute
changes in relative prices based on Herrendorf et al. (2013). From 1950 to 2010,
the relative price of agriculture (food) rises by a factor of 1.87 relative to goods,

22See for instance Buera, Kaboski, Rogerson, and Vizcaino (2022) for an explanation of the
price normalization.

23See Section 3.3.1 for a discussion of the changes in sectoral expenditure shares implied by
this calibration.
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and the relative price of services rises by a factor of 3.16. These targets translate
into falling prices for all commodities from 1950 to 2010, with the largest fall in
goods and the smallest fall in services.

3.2.3 Inequality Dynamics

Household productivity follows an AR(1) process in logs, to which a Pareto tail
is appended, with a time-varying Pareto tail parameter αθ set to 2.2 in 1950 and
1.65 in 2010 (Aoki and Nirei 2017). We fix ρθ, the persistence of the productivity
process, to 0.9 and set σθ the standard deviation of the innovation each period to
match the variance of log income in 1950 (0.57) and 2010 (0.78) in the extended
Survey of Consumer Finances (SCF+) of Kuhn, Schularick, and Steins (2020).24

The variance of log income is targeted explicitly, but the model provides a good
fit for income inequality along the entire income distribution. Table D.2 shows
income shares by quintile. As in the data, the income share of the bottom quintile
falls by a third in the model, and the share of income going to the top quintile
strongly increases.

3.2.4 Government

We restrict the analysis to a parametric but flexible functional form, following
Ferriere, Grübener, Navarro, and Vardishvili (2023). The tax payment is given by

T (y) = exp
[
log(λ)

(
y−2τ

)]
y − T. (12)

The first part of the equation describes a two-parameter tax function, with param-
eter λ governing the level of taxes and parameter τ governing the progressivity,
and T is a lump-sum transfer.25 We set T and τ for the years 1950 and 2010 to
match the transfer-to-output ratio and the difference in average marginal tax rates
(AMTRs) between the top-10% and the bottom-90% of the income distribution.
We measure transfers as income security programs, amounting to 1.1% of GDP in
1950 and 3.6% of GDP in 2010.26 We use data from Mertens and Montiel Olea
(2018) to compute the difference in AMTRs, equal to 13% in 1950 and 9% in 2010.
We set exogenous spending G to match a spending-to-output ratio of 14% in both

24See Appendix C.1 for details on the SCF+ data.
25See Appendix D.1 for more details on the tax function.
26Income security programs consist of general retirement and disability insurance (excluding

social security), federal employee retirement and disability, unemployment compensation, hous-
ing assistance, food and nutrition assistance, and other income security (White House Office of
Management & Budget, OMB).
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years.27 The parameter λ of the tax function is determined by the restriction that
the government budget has to clear period by period.

3.3 Dynamic Model: Validation

We now validate the calibration. We investigate expenditure and labor supply
patterns, both over time and in the cross-section. We also verify dynamic decisions
with wealth effects and MPCs. We end this section with a comparison of the
implied degree of DRRA to estimates in the literature.

3.3.1 Expenditures

Aggregate expenditure shares over time. We investigate the change in ag-
gregate sector shares between 1950 and 2010, to validate the rising living standards
in the model. As shown in Table D.1, the model captures well the structural change
out of agriculture towards services, with an agricultural sector share of 17% (data:
22%), goods share of 49% (39%), and services share of 34% (39%) in 1950.

Expenditure inequality. We investigate the change in expenditure inequality
between 1950 and 2010, to validate the change in distributional concerns in the
model. Expenditure inequality in the model is the result of income inequality,
which we match, and private savings decisions.

In line with evidence, the expenditure distribution is more equal than the
income distribution. In 2010, the variance of log expenditure in the model is
0.46, close to the number of 0.36 reported in Attanasio and Pistaferri (2014) using
CEX data. The discrepancy traces back to our assumption of a Pareto tail in the
income distribution, while the CEX does not oversample high-income households.
The model also matches well the distribution of wealth by quintile, as reported in
Table D.2.

There is no evidence on the distribution of expenditure in 1950. Yet, the
model generates a reasonable wealth-to-income ratio (Table D.1) and distribution
of wealth by quintile (Table D.2), which is informative of the capacity of the model
to also generate a reasonable distribution of log expenditure. We obtain a variance
of log expenditure of 0.33 in 1950 in the model, thus smaller than in 2010.28

27Spending has risen over time in the data, but this increase has been largely deficit financed,
which we do not model in our stationary setup—see for instance https://fred.stlouisfed.
org/series/FYFSDFYGDP. We keep the spending-to-output ratio constant, as changing spending
requirements would introduce further dynamics in the optimal level of tax progressivity—see
Heathcote and Tsujiyama (2021) for a discussion of how “fiscal pressure” influences optimal tax
progressivity.

28There is no consensus in the literature on how much consumption inequality has increased
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Expenditure shares in the cross-section. We investigate cross-sectional het-
erogeneity in expenditure sector shares in 2010 in the model to validate further
the preference parameters {εj} estimated in Comin et al. (2021). The agriculture
expenditure share is 8.8 percentage points larger in the bottom than in the top
expenditure quintile in 2017 (Meyer and Sullivan 2023), to be compared to a 11.8
percentage points difference in the model. Instead, the services expenditure share
is 10 percentage points smaller in the bottom than in the top income quintile
in 2010 (Boppart 2014), to be compared to 12.5 percentage points in the model.
Overall, the model captures well cross-sectional heterogeneity in expenditure sec-
tor shares in 2010. Again, there is no cross-sectional evidence for 1950.

3.3.2 Labor Supply

Recent literature has documented key patterns of labor supply over time, across
countries, and in the cross-section within a country. Boppart and Krusell (2020)
find a steady fall in hours worked by roughly 0.5% per year as a robust pattern
of labor supply over time for different countries. For the postwar United States,
McGrattan and Rogerson (2004) and Ramey and Francis (2009) find a fall in hours
per worker of 5-7%.29 Cross-sectional patterns of labor supply have also changed
over time. Before the 1970s, low-wage workers worked more hours than high-wage
workers, a pattern which has reversed since then—see Costa (2000), Heathcote,
Perri, and Violante (2010), Mantovani (2023), and Heathcote et al. (2023).

We compute aggregate and cross-sectional changes in labor supply in the
model. Aggregate labor supply falls by 7% over time, a number which is some-
what high but consistent with the estimates in the literature. The correlation
between hours worked and hourly wage increases by 12 points from 1950 to 2010—
Heathcote et al. (2023) compute an increase of 22 points for men and 7 points for
women from 1967 to 2021. A larger curvature in utility would increase the change
in the correlation, at the expense of a larger fall in labor supply. Overall, this par-
simonious model captures fairly well the effects of growth on labor supply, both
in the aggregate and the cross-section.

over time. Krueger and Perri (2006) or Heathcote, Perri, Violante, and Zhang (2023), among
others, report stable or moderately increasing consumption inequality. Accounting for measure-
ment error, Attanasio, Hurst, and Pistaferri (2014) and Aguiar and Bils (2015) find instead that
consumption inequality has increased as much as income inequality since the 1980s. Meyer and
Sullivan (2023) focus on well-measured consumption only in the Consumer Expenditure Survey
and find that consumption inequality rose less than income inequality between 1961 and 2017.
See this paper also for a more complete review of the different approaches and results in the
literature.

29In terms of total hours this is compensated by rising female labor force participation, a
pattern we abstract from in the model.
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3.3.3 Wealth Effects and MPCs

We exploit the dynamic dimension in the model to further validate the calibration
of preferences and the implied degree of DRRA. In particular, we link RRA to
concepts that are better measurable in the data, such as MPCs and wealth effects.
To do so, we derive the following expression from the households’ budget constraint
and savings decisions:

η

(
φ

e

θn
+

eT ′′ (θn)

T ′ (θn)

)
= MPC × RRA, (13)

where η denotes the wealth effect.30

In 2010, the calibrated model produces MPCs and wealth effects well in line
with available evidence.31 For MPCs, we compute the expenditure response to
a $500 increase in wealth. On average, the model produces an MPC of 18%.
While this is relatively low compared to most of the available evidence (Kaplan
and Violante 2022), we consider it a success for this class of models with only
one asset calibrated to the entire stock of wealth. For wealth effects, we compare
the model response to a one-time unanticipated wealth shock to the evidence
provided by Golosov, Graber, Mogstad, and Novgorodsky (2023), who measure
the earnings response to lottery winnings using the universe of U.S. taxpayers.
The model captures well that earnings fall by $2.3 in response to a $100 wealth
shock.

3.3.4 DRRA: Relation to the Literature

Finally, we directly compare the model implied degree of DRRA to available ev-
idence from the literature, attained using a vast variety of different approaches.
The calibrated model implies a modest degree of DRRA. From 1950 to 2010,
average relative risk aversion falls from 1.07 to 0.99. Similarly, cross-sectional dis-
persion in risk aversion is small, as shown in Figure 1. This degree of DRRA is
small relative to available evidence, as we describe next.

Evidence on DRRA first stems from direct empirical estimates of varying RRA
or IES. Ogaki and Zhang (2001) and Zhang and Ogaki (2004) reject the hypothesis
of CRRA in favor of DRRA using consumption data from Pakistani and Indian
villages. Atkeson and Ogaki (1996) estimate the IES both using Indian panel data
and in the aggregate time series for India and the United States. They find that

30Details of the derivation are presented in Appendix D.3.1.
31See Appendix D.3.2 for more details on the computations of the MPCs and the wealth effects

in the model.
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Figure 1: Relative Risk Aversion
Notes: Figure 1 plots dispersion in relative risk aversion in the calibrated model in 1950 (left
panel) and 2010 (right panel). Wealth is normalized by mean wealth.

the IES of the richest households in India is 60% higher than the one of the poorest
households. The ratio of the IES between the United States and India is roughly
1.5. In the U.S. time series they estimate an increase in the IES from 0.38 to 0.41
from 1929 to 1988. Blundell, Browning, and Meghir (1994) and Attanasio and
Browning (1995) also estimate an IES increasing in consumption using UK data.
Finally, Blundell et al. (1994) report variation in the IES from the 10th to the 90th
percentile ranging from 0.66 to 1.10 or 0.96 to 2.8, depending on the specification.
Relative to this body of evidence, the variation in our model is modest.

In addition to these direct estimates, DRRA is an important feature in making
theory consistent with data in a variety of fields, such as consumption theory,
household finance, and development.32

3.4 Static Model: Calibration

Finally, we briefly describe the quantification of the static model. We calibrate
preferences, growth and prices, and government parameters as in the dynamic
model.33 Regarding inequality, we follow a partial-insurance approach and cali-

32In consumption theory, NH preferences that imply DRRA can account for consumption
responses to permanent income changes (Straub 2019). In finance, DRRA helps in matching
portfolios across the wealth distribution (Cioffi 2021; Wachter and Yogo 2010) and in mitigating
the equity premium puzzle (Ait-Sahalia, Parker, and Yogo 2004). In development, Donovan
(2021) argues that DRRA is important in accounting for aggregate productivity differences
across countries.

33See Appendix D.4 for more details.

25



brate productivities such that expenditure inequality in the model is consistent
with the data.34 Specifically, we calibrate the skill distribution as an exponentially
modified Gaussian distribution (EMG), as in Heathcote and Tsujiyama (2021).
For 2010, we set the Pareto tail parameter to 3.3, twice larger than the one for
the income distribution (Aoki and Nirei 2017; Gaillard, Hellwig, Wangner, and
Werquin 2023; Toda and Walsh 2015). For 1950, absent estimates of the tail pa-
rameter for the expenditure distribution, we assume the relation between income
and consumption tail parameters to be constant and obtain a value of 4.4. We set
the variance of the normal shock in 2010 to match a variance of log expenditure
of 0.38—a number well in line with the literature (Attanasio and Pistaferri 2014;
Heathcote et al. 2010). The variance of log expenditure is thus about 40% the
variance of log income in 2010. We maintain this ratio and set the variance of the
income shock to calibrate a variance of log expenditure of about 0.26 in 1950.35

Table D.3 summarizes all parameters.
We validate this calibration by examining labor supply behavior over time and

in the cross-section. Over time, aggregate labor supply falls by 5%. Labor supply
is monotonically decreasing in productivity in 1950 and monotonically increasing
in productivity in 2010, as in the data. Average risk aversion amounts to numbers
very comparable to the dynamic model, at 1.08 in 1950 and 0.99 in 2010.

4 Optimal Policies

We now quantify the effects on the optimal t&T system of the rising living stan-
dards relative to the rising inequality. Section 4.1 follows a Ramsey approach in
the dynamic model and computes the optimal fiscal system in 2010 within the
class of t&T functions described in Section 3.2. Section 4.2 complements the anal-
ysis with the optimal fully nonlinear t&T system in the static model, and further
uses the theoretical results from Section 2.3 to decompose the effects of growth.
Section 4.3 presents various robustness exercises.

4.1 Ramsey Analysis in Dynamic Model

We start with the Ramsey analysis in the dynamic model. We proceed in three
steps. First, we find inverse optimum Pareto weights that make the observed t&T

34With no distinction between net-income and expenditure, we could rather match the income
distribution. We target expenditure inequality as it determines dispersion in marginal utilities.

35We show that the expenditure distributions by quintiles are comparable across the static
and the dynamic models; see Table D.4 in the appendix.
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system in 1950 optimal. Second, we add the change in inequality from 1950 to
2010. Third, we also account for rising income levels through the fall in prices.

Pareto Weights. We start from the 1950 calibrated t&T system and find the
Pareto weights under which it is optimal. When evaluating the optimal t&T

system in 2010, we will then assume fixed social preferences over time.36

In static Mirrlees models, it is natural to make welfare weights a function
of productivity. In the dynamic model, heterogeneity is two-dimensional, with
households differing both in productivity and wealth. A one-dimensional measure,
capturing how well-off a household is, is expenditure.37

The t&T system in 1950 is characterized by two parameters, T and τ . Hence,
we use a two-parameter function for the Pareto weights, which we assume of the
following form: w (π) = µ + π(ei)

ν , where we loosely think of ν to relate to the
progressivity and µ to the lump-sum transfer. The Pareto weight w depends on
the percentile π of the expenditure distribution, to avoid to mechanically increase
Pareto weights on the rich as inequality increases.38

Figure 2 reports the calibrated (and optimal) marginal and average t&T rates
in 1950. In 1950, average rates are only very modestly negative at the bottom,
given the small transfer at around 1% of GDP.

Rising inequality. Starting from the 1950 economy, we first adjust only in-
equality to 2010 levels and compute the optimal t&T system. To do so, we modify
both the Pareto tail parameter α and the variance of the innovation of the AR(1)
process governing the dispersion in productivity, but we keep prices constant at
their 1950 level.

As shown in Figure 2, the t&T system becomes more redistributive when
inequality rises. Taxes become more progressive, as marginal tax rates rise across
most of the income distribution and especially so at the top. The government raises
more revenues and redistributes through a larger lump-sum transfer, amounting
to 4.6% of output. Overall, the 2010 optimal t&T system provides much more
redistribution, with average t&T rates that go as low as -34% for the bottom
decile. This result echoes the typical finding in the literature that rising inequality
calls for more redistribution.

36In Section 4.3, we also present robustness with a Utilitarian social welfare function.
37Chang, Chang, and Kim (2018) also use an inverse optimum approach conditioning Pareto

weights on expenditures. As a robustness, we have also made weights a function of productivity
only and obtained similar results as those reported here.

38Appendix D.6 reports more details on the Pareto weights.
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Figure 2: Optimal t&T Rates in the Dynamic Model
Notes: Figure 2 shows the optimal marginal (left panel) and average (right panel) t&T rates
schedule in the dynamic model for three cases: (1) the 1950 inverse optimum; (2) a counterfactual
economy with only the rise in inequality from 1950 to 2010, called “2010 ineq. only”; and (3) the
2010 economy with rising inequality and falling prices, called “2010 ineq. & growth”. Income is
normalized by mean income.

Rising living standards. The third scenario in Figure 2 accounts for rising
living standards due to growth, in addition to rising inequality. To do so, we
adjust prices to their 2010 level.

When also accounting for rising living standards, marginal tax rates do in-
crease, as compared to the 1950 t&T system, but not as much as when only
accounting for rising inequality. The optimal lump-sum transfer amounts to only
3.3% of output—again larger than in 1950, but smaller than the 4.6% obtained
when only accounting for rising inequality. In fact, the optimal transfer-to-output
ratio comes close to its data counterpart of 3.6%.

Hence, rising living standards reduce the desired increase in the transfer-to-
output ratio by 35%. Rising living standards also reduce the desired increase in
top 10% average rates minus bottom 10% average t&T rates by around 30%. The
average t&T rate now only amounts to -24% for the bottom decile.

4.2 Mirrlees Analysis in Static Model

We now turn to the optimal policy analysis in the static Mirrlees model with
unrestricted nonlinear income taxes. We follow the same approach as with the
dynamic model. We start with finding inverse optimum weights making the 1950
t&T system optimal. In this framework, we can find a unique set of Pareto weights
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Figure 3: Optimal t&T Rates in the Static Model
Notes: Figure 3 shows the optimal marginal (left panel) and average (right panel) t&T rates
schedule in the Mirrlees setup for three cases: (1) the 1950 inverse optimum; (2) a counterfactual
economy with only the rise in inequality from 1950 to 2010, called “2010 ineq. only”; and (3) the
2010 economy with rising inequality and and falling prices, called “2010 ineq. & growth”.

as a function of productivity, which in this environment captures inequality in
earnings potential (Bourguignon and Spadaro 2012). As before, we keep these
weights constant over time as functions of the position in the distribution.

Figure 3 shows the optimal marginal and average t&T rates in the static model
for the three cases: (1) the 1950 calibrated t&T function; (2) the optimal 2010 t&T

system when accounting only for rising inequality; and (3) the optimal 2010 t&T

system when also accounting for rising living standards. Results are comparable
to those in the dynamic model. In 1950 marginal tax rates are monotonically
increasing, as imposed by the calibration. When only accounting for rising in-
equality, marginal tax rates rise across most of the distribution except at the very
bottom. The transfer-to-output ratio, which equates 1.2% in the calibration of
the 1950 economy, rises to 6.7%—a slightly larger increase than in the dynamic
model. When also accounting for rising living standards, the optimal t&T system
provides more redistribution than in 1950, but less so than when only accounting
for rising inequality: The transfer-to-output ratio increases to only 4.5%. Hence,
by this metric, growth reduces the desired increase in the transfer-to-output ratio
by 40%. As in the dynamic model, rising living standards also reduce the in-
crease in top-10% average rates minus bottom-10% average rates by almost 30%.
Overall, the rising living standards dampen the desired increase in redistribution
due to rising inequality, and this result is robust across the Ramsey and Mirrlees
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Figure 4: Decompositions of the Effect of Growth in the Static Model
Notes: Figure 4 presents two decompositions of the effects of growth in the Mirrlees setup. Both
panels present marginal rates for two cases: (1) the 1950 inverse optimum; (2) a counterfactual
economy with only falling prices from 1950 to 2010, called “2010 growth only”. The left panel
decomposes the effects of growth into three channels: the distributional gains, the efficiency
costs, and the income distribution channels. The right panel decomposes the effects of growth
into two steps: a homogeneous fall in prices fixing relative prices, followed by an adjustment in
relative prices.

approaches.
We now use the quantified version of the static model for two decompositions.

Decomposition of the growth effect: three channels. The first decompo-
sition builds on the optimal tax formula in Lemma 3 and the comparative statics
in Propositions 2-4 to quantify the main drivers of the effect of growth on opti-
mal taxes. For this purpose, we abstract from the rising inequality and keep the
distribution of θ fixed. Recall that changes in Λ affect the tax formula through
three channels: the distributional gains channel (Proposition 2), the efficiency
costs channel (Proposition 3), and the income distribution channel (Proposition 4).
The left panel of Figure 4 presents the decomposition.

We start from the 1950 calibrated t&T system. First, we account for the total
effect of growth on optimal taxes—that is, we evaluate the tax formula keeping
the θ distribution as in 1950 but using 2010 prices. Marginal taxes fall across
the board. Hence, fewer revenues are raised and the small lump-sum transfer
turns into a lump-sum tax, with the transfer-to-output ratio decreasing from 1.2%
to -0.7%. This result illustrates again that rising living standards call for less
redistribution.
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We then reverse-engineer this overall effect of growth in three steps. To isolate
the distributional gains channel, we derive the optimal t&T system with marginal
utilities computed under 1950 prices, but income effects and hours worked com-
puted under the 2010 prices. With distributional gains as in 1950, redistribution
increases strongly, with marginal rates increasing by 3 to 5 percentage points across
the board; the transfer-to-output ratio rises to 2.4%. To also account for the effi-
ciency costs channel, we derive the optimal t&T system with also income effects
computed under the 1950 prices. Theoretically, larger income effects have ambigu-
ous effects. Quantitatively, the opposing effects essentially cancel out. Marginal
tax rates and the transfer-to-output ratio barely change relative to the previous
scenario. Finally, to also account for the income distribution channel, we compute
optimal hours using the 1950 prices as well—which retrieves exactly the 1950 cali-
brated t&T system. This last step further lowers marginal rates as, given constant
skill inequality, income inequality is lower at 1950 than at 2010 prices: the variance
of log expenditure decreases moderately, from 0.27 to 0.26. Overall, the first effect
dominates quantitatively: rising living standards decrease optimal redistribution
mostly due to lower distributional gains.

Relative prices. The second decomposition disentangles the effect of the ag-
gregate fall in prices, driven by changes in level Λ, from the effect of changes in
relative prices. Indeed, from 1950 to 2010 all prices fall, but prices in agriculture
and manufacturing fall by more than prices in services.

Again, we start from the 1950 calibrated t&T system, and we first account
for the total effect of growth—that is, we evaluate the tax formula keeping the θ

distribution as in 1950 but using 2010 prices, accounting for both the aggregate
fall in prices and the change in relative prices. We then isolate the effect of the
aggregate fall in prices. To do so, we compute a counterfactual where relative
prices in 2010 remain as in 1950 but all prices fall to generate the same growth in
GDP per capita as in the data. As shown in the right panel of Figure 4, the effect
of changes in relative prices is very modest in our setup.

4.3 Robustness

To conclude the analysis, we conduct three robustness exercises. First, we recali-
brate the economy assuming a larger degree of RRA. Second, we derive the optimal
t&T system of a Utilitarian planner. Third, we replicate the benchmark exercise
using the other NH preferences generally used in the literature, the IA preferences
of Alder et al. (2022). We conduct these exercises in the Mirrlees environment,
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Figure 5: Optimal t&T Rates in the Static Model: Robustness
Notes: Figure 5 shows the optimal marginal t&T rates schedule in the static model for three
cases: (1) the 1950 economy; (2) a counterfactual economy with only a rise in inequality; and
(3) the 2010 economy with rising inequality and growth. The left panel assumes a larger risk
aversion; the right panel assumes a Utilitarian planner.

which is quantitatively more tractable.

Higher risk aversion. The right panel of Figure 5 features marginal t&T rates
in an economy calibrated to higher risk-aversion, with the curvature parameter γ
moving from 0.75 to 1.5.39 Average risk aversion now amounts to 1.37 in 2010, and
to 1.61 in 1950 as higher levels of risk aversion also amplify DRRA. This moderate
increase in the level of risk aversion amplifies significantly the effects of growth on
the optimal t&T system. From 1.1% of GDP in 1950, the optimal transfers increase
to 7.2% in 2010 when only accounting for rising inequality, but only to 1.8% when
also accounting for rising living standards. By this metric rising living standards
thus reduce the desired increase in redistribution by almost 90%. The difference in
average t&T rates between top-10% and bottom-10% also decreases by almost two-
thirds when accounting for rising living standards. Yet, this alternative calibration
with higher risk aversion also generates a counterfactually large fall in aggregate
labor supply.

Utilitarian planner. The left panel of Figure 5 features marginal t&T rates
for a Utilitarian planner. Marginal rates are much higher across all scenarios—a
common finding in the literature when assuming a Utilitarian planner (Heathcote
and Tsujiyama 2021; Saez 2001). In 1950, the optimal transfer amounts to 25.2%

39Table D.3 summarizes the parameters for this calibration.
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of GDP. With only rising inequality, optimal marginal rates increase and the
transfer reaches 29.2% of GDP. Adding rising living standards, optimal marginal
rates increase by less and finance a lower transfer, at only 27.6% of GDP. By this
metric rising living standards thus reduce the desired increase in redistribution by
almost 40%. Using the alternative metric of the difference in average t&T rates
between top-10% and bottom-10%, rising living standards reduce the optimal
increase in redistribution by almost 10%.

IA preferences. Finally, we perform the analysis replacing the NH CES prefer-
ences with the other state-of-the-art NH preferences, the IA preferences of Alder
et al. (2022) introduced in Section 2.

We follow the functional form for D presented in Alder et al. (2022):

D(p∗) =
ν

η

([
D̃(p∗)

B(p∗)

]η
− 1

)
, D̃(p∗) =

(∑
j∈J

θjp
∗
j
1−ι

) 1
1−ι

,

with ν ≥ 0, η ∈ (0, 1), ι > 0,
∑

j∈J θj = 1, and θj ≥ 0 ∀j. We calibrate these
preferences to match the same targets as with the NH CES.40

Key to the calibration are the levels of {c̄j}, which govern the sign of the
generalized Stone-Geary term A. As explained in Lemma 2, A > 0 is a necessary
and sufficient condition for the IA preferences to generate a fall in labor supply,
and for the IA preferences to satisfy DRRA. The obtained fall in aggregate labor
supply is small, at −0.45%, yet generating a somewhat stronger DRRA pattern
than in the benchmark case. Average risk aversion equals 1.1 in 1950, as with the
NH CES preferences, but amounts to 1.65 for the poorest in 1950, to be compared
to 1.25 with the NH CES preferences. Aggregate risk aversion falls to 0.94 in 2010,
to be compared to 0.99 with the NH CES preferences.

Therefore, the effects of growth are larger than in the NH CES benchmark, as
can be see in Figure 6. The transfer-to-output ratio moves from 1.1% in 1950 to
5.6% when only accounting for rising income inequality, but to only 2.0% when
also accounting for growth. As such, rising living standards reduce the optimal
rise in the transfer-to-output ratio by more than 80%. Rising living standards
also reduce the optimal increase in the difference in average t&T rates between
top-10% and bottom-10% by close to half.

Overall, rising living standards reduce the increase in the optimal level of
redistribution due to rising inequality, and this result holds regardless of the exact

40The parameters for the IA preferences are the following: γ = 1 − η = 0.9, , c̄A = 0.03,
c̄G = 0.00, c̄S = 0.005, σ = 0.001, ΩA = 0.06, ΩG = 0.4, ν = 15, ι = 2, θA = 0.22, θG = 0.62
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Figure 6: Optimal t&T Rates in the Static Model: IA Preferences
Notes: Figure 6 shows the optimal marginal and average t&T rates schedule with IA preferences
in the static model for three cases: (1) the 1950 economy; (2) a counterfactual economy with
only a rise in inequality; and (3) the 2010 economy with rising inequality and growth.

functional form of NH preferences used.

5 Conclusion

This paper explored the impact of rising living standards on the optimal design
of the t&T system. With NH preferences, growth weakens distributional concerns
while having ambiguous effects on efficiency concerns. Quantifying these forces, we
found that rising living standards, an increase in the first moment of the income
distribution, significantly dampen the optimal increase in redistribution due to
rising inequality, a heavily-scrutinized change in the second moment.
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A Theory

A.1 Heterogenous Expenditure Elasticities

A.1.1 NH CES Preferences

We abuse notation for the following proofs and use C(e) = C(e; Λ, p).

Risk aversion. Differentiating the expenditure function (2), denoting Ω∗
j ≡

p∗j
1−σΩj = (pj/Λ)

1−σ Ωj, one obtains

Ce(e) = (1− σ)e−σ

(∑
j

Ω∗
jεjC(e)εj−1

)−1

(14)

Cee(e) = −Ce(e)
e

(
σ + Ce(e)e

∑
j Ω

∗
jεj(εj − 1)C(e)εj−2∑
j Ω

∗
jεjC(e)εj−1

)

where Ce(e) > 0 ∀e. Rearranging this yields risk aversion equal to

γ(e) = σ + (1− σ)
1

χ(C(e))
(γ − 1 + ζ(C(e))) ,

where χ(C) ≡
∑

j Ω
∗
jεjC

εj∑
j Ω

∗
jC

εj
and ζ(C) ≡

∑
j Ω

∗
jε

2
jC

εj∑
j Ω

∗
jεjC

εj
.

To characterize long-run risk aversion, take the limit when e → ∞, i.e. when C →
∞, and note that limC→∞ χ(C) = limC→∞ ζ(C) = εJ , which yields equation (6).

Proof. (Lemma 1) We prove inequality (5). Using equation (14), one can rewrite
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the first term in the risk aversion formula (4) as

γ
Ce(e)e
C(e)

= γ(1− σ)

∑
j Ω

∗
jC(e)εj∑

j Ω
∗
jεjC(e)εj

. (15)

As Ce(e) > 0 and γ(1− σ) > 0, we only need to show that the fraction in (15) is
decreasing in C, i.e. that the inverse of the fraction in (15) is increasing in C:

∂

∂C

[∑
j Ω

∗
jεjC

εj∑
j Ω

∗
jC

εj

]
=

(∑
j

Ω∗
jC

εj

)−2
1

C

1

2

∑
k

∑
j

Ω∗
kΩ

∗
j(εk − εj)

2Cεk+εj > 0,

which completes the proof. The proof of Corollary 1 is in Appendix B.1.1.

A.1.2 IA Preferences

Proof. (Lemma 2) Differentiating the IA indirect utility function (3) yields

ue (e; p,Λ) = B(p∗)−1+γ (e−A (p∗))−γ , uee (e; p,Λ) = −γB(p∗)−1+γ (e−A (p∗))−γ−1 .

The coefficient of RRA follows as γ (e; p,Λ) = γe/(e−A (p∗)), and thus

∂γ (e; p,Λ)

∂e
= −γ

A (p∗)

[(e−A (p∗))]2
< 0 for A (p∗) > 0.

A.2 Optimal Income Taxes

A.2.1 Household Behavior Given Taxes

We first describe households’ optimal policies given taxes. We suppress depen-
dence on p to ease notation.

Relation between ue and uΛ. Denote the Lagrangian multiplier associated
with problem (Step 2) by µ. Application of the envelope theorem yields, omitting
arguments,

ue = µ and uΛ = µ
∑
j

pj
Λ2

cj = µ
e

Λ
, and thus ue = uΛΛ/e.

Since this relation holds for each e, we can take derivatives, which yields

uee =
uΛeΛe− uΛΛ

e2
= Λ

(uΛe

e
− uΛ

e2

)
⇔ ueΛ =

e

Λ
uee+uΛ

1

e
=

e

Λ
uee+ue

1

Λ
. (16)
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Labor supply decision. The first-order condition (FOC) and second-order con-
dition (SOC) of (Step 1) read as:

−Bnφ + ue(e; T ,Λ)(1− T ′)θ = 0, (17)

−Bφnφ−1 + uee(e; T ,Λ) ((1− T ′)θ)
2 − ue(e; T ,Λ)T ′′θ2 < 0. (18)

Denoting ρ(y) ≡ −d log(1−T ′(y))
d log(y)

= T ′′(y)y
(1−T ′(y))

, the SOC can be rewritten as

−
(
φ+ γ(e; T ,Λ)

(1− T ′)nθ

e
+ ρ(nθ)

)
< 0.

Wealth effect on labor supply. First, we derive the response of labor supply
to an increase in the intercept of the tax T (0). Implicit differentiation yields:

∂n

∂T (0)
= − −uee(e; T ,Λ)(1− T ′)θ

−φBnφ−1 + uee(e; T ,Λ)(1− T ′)2θ2 − ue(e; T ,Λ)T ′′θ2
.

Using equation (18) and the definition of γ(e; Λ) and rearranging, we obtain:

∂n

∂T (0)
=

γ(e; Λ)n
e

φ+ γ(e; Λ)n
e
(1− T ′)θ + ρ(y)

.

Equation (7) then immediately follows from its definition.

A.2.2 Homothetic Benchmark

Proof. (Proposition 1) We proceed in 4 steps: (1) we show that incomes grow at
rate α ≡ (1 − γ)/(φ + γ) in response to growth g → 0 and its accompanied tax
reform (9); (2) we show that expenditures also grow at rate α; (3) we show that
marginal and average tax rates stay constant given θ; and (4) we show that, given
steps (1-3), tax reform (9) is indeed optimal.

Step 1. First, note that tax reform (9) implies a marginal change in the absolute
level of the tax payment for income level y by

dT̃ (y; Λ) =
1− γ

φ+ γ
(T (y; Λ)− T ′(y; Λ)y) . (19)

The implied change in the marginal tax rate is then given by

dT̃ ′(y; Λ) =
1− γ

φ+ γ
(T ′(y; Λ)− T ′(y; Λ)− T ′′(y; Λ)y) = − 1− γ

φ+ γ
T ′′(y; Λ)y. (20)

Now consider a small perturbation of the individual first-order conditions by
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g = dΛ
Λ

and associated change in the absolute tax level as defined in (19) and in
the marginal tax rate as defined in (20). The adjustment of labor supply dn such
that the FOC still holds is then defined by:

SOCdn+ ueΛ(e; T ,Λ)(1− T ′)θΛ− ue(e; T ,Λ)θ

(
− 1− γ

φ+ γ
T ′′y

)
− uee(e; T ,Λ)(1− T ′)θ

1− γ

φ+ γ
(T − T ′y) = 0,

where SOC is defined in (18). Solving for dn and using (16) yields (omitting
arguments)

dn =
− (ueee+ ue) (1− T ′)θ − ueθ

1−γ
φ+γ

T ′′y + uee(1− T ′)θ 1−γ
φ+γ

(T − T ′y)

−Bφnφ−1 + uee ((1− T ′)θ)2 − ueT ′′θ2
.

Collecting uee and ue terms and invoking the FOC ueθ(1− T ′) = Bnφ yields:

dn

n
=

γ(θ; Λ)
(
1− 1−γ

φ+γ
(T − T ′y) 1

e

)
−
(
1 + 1−γ

φ+γ
T ′′

1−T ′y
)

−φ− γ(θ; Λ) (1−T ′)y
e

− T ′′

1−T ′y
.

Rearranging and using y = e+ T and hence 1 + T
e
= y

e
implies

dn

n
=

1− γ

φ+ γ

(
1 +

φ+γ
1−γ

(1− γ(θ; Λ))− γ(θ; Λ)− φ

φ+ γ(θ; Λ) (1−T ′)y
e

+ T ′′

1−T ′y

)
. (21)

In the homothetic case where γ(θ; Λ) = γ ∀(θ,Λ), this implies dy/y = α.

Step 2. As e = y − T (y; Λ), the change in expenditure is given by

de

e
=
dy (1− T ′(y; Λ))− dT̃ (y; Λ)

e
= α.

Step 3. The average tax rate does not change for a given type θ. To see that,
recall the definition of the average tax rate: T (y; Λ)/y = (y − e)/y where both y

and e grow at the same rate α.
Next, we turn to the marginal tax rate. The new tax schedule is defined as:

lim
g→0

T (y; Λ (1 + g)) = T (y; Λ) + lim
g→0

gα (T (y; Λ)− T ′(y; Λ)y)
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and hence

lim
g→0

T ′(y; Λ (1 + g)) =T ′(y; Λ)− lim
g→0

gαT ′′(y; Λ)y. (22)

We want to show that

lim
g→0

T ′ (y (1 + αg) ; Λ (1 + g)) = T ′(y; Λ). (23)

Evaluating (22) at y(1 + αg), we obtain

lim
g→0

T ′(y (1 + αg) ; Λ (1 + g)) = lim
g→0

[T ′(y (1 + αg) ; Λ)− gαT ′′(y (1 + αg) ; Λ)y (1 + αg)]

=T ′(y; Λ) + lim
g→0

[gαyT ′′(y (1 + αg) ; Λ)− gαT ′′(y (1 + αg) ; Λ)y (1 + αg)]

=T ′(y; Λ)− lim
g→0

g2α2T ′′(y (1 + αg) ; Λ)y = T ′(y; Λ).

Step 4. We show that tax reform (9) satisfies the government’s optimality con-
ditions at the allocation it implements.

We start with the distributional gains term. As e(θ; Λ) grows at rate α ∀θ,

D̂(θ∗; T ,Λ, dT̃ ) =

∫ θ̄

θ
(uee(x; Λ)αe(x; Λ) + ueΛ(x; Λ)Λ)w(x)

dF (x)
1−F (θ∗)∫ θ̄

θ
ue(x; Λ)w(x)

dF (x)
1−F (θ∗)

−
∫ θ̄

θ∗
(uee(x; Λ)αe(x; Λ) + ueΛ(x; Λ)Λ)w(x)

dF (x)
1−F (θ∗)∫ θ̄

θ∗
ue(x; Λ)w(x)

dF (x)
1−F (θ∗)

.

where the “hat-notation” is as defined in (8). Using (16) and rearranging,

D̂(θ∗; T ,Λ, dT̃ ) =

∫ θ̄

θ
(γ(θ; Λ)ue(x; Λ) (1 + α) + ue(x; Λ))w(x)

dF (x)
1−F (θ∗)∫ θ̄

θ
ue(x; Λ)w(x)

dF (x)
1−F (θ∗)

−
∫ θ̄

θ∗
(γ(θ; Λ)ue(x; Λ) (1 + α) + ue(x; Λ))w(x)

dF (x)
1−F (θ∗)∫ θ̄

θ∗
ue(x; Λ)w(x)

dF (x)
1−F (θ∗)

. (24)

For the homothetic case, γ(θ; Λ) = γ for all θ yields D̂(θ∗; T ,Λ, dT̃ ) = 0.
We turn to the efficiency costs term. We need to show that η(θ; T ,Λ) =
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η(θ; T + g × dT̃ ,Λ (1 + g)). Note that η(θ; T + g × dT̃ ,Λ (1 + g)) is equal to

γ y(1+αg)
e(1+αg)

φ+ γ y(1+αg)
e(1+αg)

(1− T ′ ((1 + αg)y; Λ (1 + g))) + ρ(y (1 + αg) ; Λ (1 + g))
.

Hence, η(θ; T ,Λ) = η(θ; T +g×dT̃ ,Λ (1 + g)) requires that ρ(y (1 + αg) ; Λ (1 + g)) =

ρ(y; Λ). Make use of the fact that (23) has to hold for each value of y implying

T ′′(y (1 + αg) ; Λ (1 + g)) (1 + αg) = T ′′(y; Λ)

which immediately implies ρ(y (1 + αg) ; Λ (1 + g)) = ρ(y; Λ).

A.2.3 NH Preferences: Distributional Gains Channel

Proof. (Proposition 2) Equation (24) implies that D̂(θ∗; T ,Λ, dT̃ ) is equal to

(1 + α)

∫ θ̄

θ
(γ(θ; Λ)ue(x; Λ))w(x)

dF (x)
1−F (θ∗)∫ θ̄

θ
ue(x; Λ)w(x)

dF (x)
1−F (θ∗)

−
∫ θ̄

θ∗
(γ(θ; Λ)ue(x; Λ))w(x)

dF (x)
1−F (θ∗)∫ θ̄

θ∗
ue(x; Λ)w(x)

dF (x)
1−F (θ∗)


which yields the result in Proposition 2.

A.2.4 NH Preferences: Efficiency Costs Channel

Proof. (Proposition 3) Recall from Appendix A.2.2, accounting for γ (θ; Λ) not
being constant, that

η(θ; T + g × dT̃ ,Λ (1 + g)) =
γ (θ; Λ (1 + g)) y

e

φ+ γ(θ; Λ (1 + g))y
e
(1− T ′ (y; Λ (1 + g))) + ρ(y; Λ)

.

Hence, as γΛ = eγe/Λ < 0,

η̂(θ; T ,Λ) = lim
g→0

1

g

γΛ
y
e
(φ+ ρ(y; Λ))(

φ+ γ(θ; Λ)y
e
(1− T ′ (y; Λ)) + ρ(y; Λ)

)2 < 0.

A.2.5 NH Preferences: Income Distribution Channel

Proof. (Proposition 4) Equation (21) derives ŷ(·) and implies

∀θ : d(θ; T ,Λ) ≡ 1− γ

1 + φ

(
φ+ γ(θ; Λ)

y(θ; Λ)

e(θ; Λ)
(1− T ′) + ρ(y(θ; Λ))

)
,

where d(·) > 0 iff SOC < 0. It is generally difficult to sign ∂d(θ; T ,Λ)/∂θ as T ,
and thus ρ, can vary in a non-trivial way with θ. We consider an illustrative case
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assuming a loglinear tax function: T (y) = y − (1− λ) y1−τ . There, the relative
change in income simplifies to

ŷ(θ; T ,Λ, dT̃ ) =
1− γ

φ+ γ

(
1 +

γ − γ(θ; Λ)

φ+ γ(θ; Λ) (1− τ) + τ

)
.

Taking derivatives, one can show that dŷ(θ;T ,Λ,dT̃ )
dθ

> 0 if (1 + φ)−(1− γ) (1− τ) >

0, which always holds if γ ≥ 1 and holds for γ < 1 if the baseline tax schedule is
not too concave, i.e. if τ > −(γ + φ)/(1− γ) ≥ −1 for φ−1 ≤ 1.

B Theory

B.1 Heterogenous Expenditure Elasticities

B.1.1 NH CES Preferences

Proof. (Corollary 1) We start with J = 2. We assume ε1 = ε < 1, Ω∗
1 = Ω,

and ε2 = 1, Ω∗
2 = 1 w.l.o.g. Abusing notation, we characterize risk aversion as a

function of C, which we have shown is increasing in e:

γ(C) = σ + (1− σ)
ΩCε−1 + 1

ΩεCε−1 + 1

(
γ + (ε− 1)

ΩεCε−1

ΩεCε−1 + 1

)
.

We define y ≡ ΩCε−1. Note that y is a decreasing function of C as ε < 1, thus a
decreasing function of e. Therefore, to prove that γ′(e) < 0, we need to show that
f ′(y) > 0, where f(y) is defined as

f(y) ≡ y + 1

εy + 1

(
γ − (1− ε)

εy

εy + 1

)
∀y > 0.

Some algebra yields

f ′(y) =
1− ε

(εy + 1)3
[
γ(εy + 1)− 2εy + ε2y − ε

]
. (25)

The fraction in (25) is strictly positive, so we have DRRA as long as

g(y) ≡ (γ − 2 + ε)εy + γ − ε > 0, where y > 0.

Thus, g(y) > 0 ∀y when γ > 2, while g(y) < 0 ∀y when γ < ε, which completes
the proof.
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We now turn to the case with a continuum of goods. Bohr et al. (2023) define
ε̂j ≡ (1− σ)εj and make the following set of assumptions:

1. The price parameters {p∗i }i∈[0,1] and taste parameters {Ωi}i∈[0,1] have a log-
linear relationship with {ε̂i}i∈[0,1], with a regularity condition regarding the
intercept.

2. {ε̂i}i∈[0,1] follow a gamma distribution: ε̂i ∼ Gamma(α, β), with α > 0 and
β > 0.

Then, they obtain a closed-form relationship between e and C(e) as shown in
equation (7) of their paper:

log C(e) = Ŷ − Ψ

1− σ
e−

1−σ
α ,

where Ŷ ∈ R and Ψ ∈ R+. As such, we obtain the following closed forms for the
derivatives:

Ce(e) =
Ψ

α
e−

1−σ
α

−1C(e), Cee(e) =
Ψ

α
e−

1−σ
α

−1Ce(e)−
(
1− σ

α
+ 1

)
Ce(e)
e

.

Thus, recalling (4), we can express risk-aversion as:

γ(e) = γ × Ψ

α
e−

1−σ
α︸ ︷︷ ︸

first term

+−Ψ

α
e−

1−σ
α +

(
1− σ

α
+ 1

)
︸ ︷︷ ︸

second term

= (γ − 1)
Ψ

α
e−

1−σ
α +

(
1− σ

α
+ 1

)
.

As σ < 1, it follows that γ′(e) < 0 iff γ > 1.

Rescaling Comin et al. (2021) show that all εj can be multiplied by a positive
scalar without implications on intratemporal consumption allocations. We show
next that the rescaling irrelevance extends to (i) risk aversion, (ii) labor supply,
when γ and B are rescaled appropriately.

When multiplying all εj by a scalar ι, one needs to rescale 1− γ by that same
scalar—that is, γι ≡ 1− ι(1− γ), where xι defines the rescaled version of variable
x. Rescaling both ϵJ and (1 − γ) will leave long-run risk aversion unchanged in
equation (6). More generally, the expenditure function defines a new Cι(e) which
appears in both numerators and denominators of χ and ζ. Thus, we have χι = ιχ
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and ζι = ιζ, and risk aversion becomes

γι(e) = σ + (1− σ)
1

ιχ(C(e))
(γι − 1 + ιζ(C(e)))

= σ + (1− σ)
1

ιχ(C(e))
(ι(γ − 1) + ιζ(C(e))) = γ(e).

Rescaling the curvature parameter γ as defined above leaves risk aversion un-
changed.

We turn to labor supply. When multiplying all εj by a scalar ι, one needs to
rescale the labor disutility parameter such that Bι ≡ B/ι. Abstracting from taxes
w.l.o.g. the first-order condition reads

Cι (e)−γι Ceι (e) = Bιe
φ.

Consider the LHS and recall the definition of the consumption aggregator in (1).
This yields Cι (e) = C (e)1/ι. Taking derivative w.r.t. to e in turn yields Ceι (e) =
(1/ι) C (e)1/ι−1 Ce (e). Hence obtain

Cι (e)−γι Ceι (e) = C(e)−
1
ι
[1−ι(1−γ)]1

ι
C (e)

1
ι
−1 Ce (e) = C (e)−γ Ce (e)

1

ι
,

and therefore the first order condition coincides after rescaling the disutility pa-
rameter.

B.1.2 Optimal Income Tax Formula

We first derive elasticities with respect to type and to 1− T ′.

Elasticity w.r.t. type. Implicit differentiation of the individual FOC yields:

∂n

∂θ
= −uee(e; T ,Λ)(1− T ′)2θn+ ue(e; T ,Λ)(1− T ′)− ue(e; T ,Λ)T ′′θn

−φBnφ−1 + uee(e; T ,Λ)(1− T ′)2θ2 − ue(e; T ,Λ)T ′′θ2
.

Rearranging and using again equation (17), we obtain:

εn,θ =
dn

dθ

θ

n
=

1

φ

(
1− γ(e; T ,Λ) (1−T ′)θn

e
− ρ(y)

)
1 + γ(e;T ,Λ)

φ
(1−T ′)θn

e
+ ρ(y)

φ

. (26)
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Elasticity w.r.t. to 1 − T ′. The derivation is analogous to the derivation of
εn,θ and one obtains:

εn,1−T ′ =
1

φ
× 1

1 + γ(e;Λ)
φ

(1−T ′)θn
e

+ ρ(y)
φ

. (27)

Proof. (Lemma 3) The Lagrangian of the government’s problem is:

L =

∫ θ

θ

u [n(θ; T (·,Λ),Λ, p)θ − T (n(θ; T (·,Λ),Λ, p)θ) ; Λ, p]w(θ)f(θ)dθ

−B

∫ θ

θ

n(θ; T (·,Λ),Λ, p)1+φ

1 + φ
w(θ)f(θ)dθ + λ

∫ θ

θ

T (n(θ; T (·,Λ),Λ, p)θ)f(θ)dθ − λG,

We follow the heuristic approach going back to Saez (2001) for deriving the op-
timality condition for the marginal tax rate. Consider an increase in the marginal
tax rate by dT ′ within a small interval [(y(θ∗; T (·,Λ),Λ), y(θ∗; T (·,Λ),Λ) + dy].
The mass of people affected by this increase in the marginal tax rate is approx-
imately given by h(y(θ∗; T ,Λ); T ,Λ) × dy where h is the density function of the
endogenous income distribution defined through F (θ∗) = H(y(θ∗; T ,Λ)) and hence
h(y(θ∗; T ,Λ))yθ(θ

∗; T ,Λ) = f(θ∗). We therefore have

h(y(θ∗; T ,Λ); T ,Λ)× dy =
f(θ∗)dy

yθ(θ∗; T ,Λ)
.

Note that each individual affected by the increase in the marginal tax rate changes
their earnings by

∂y(θ∗; T ,Λ)

∂T ′ dT ′ = −εy,1−T ′(θ∗; T ,Λ)
y(θ∗; T ,Λ)

1− T ′(y(θ∗; T ,Λ); Λ)
dT ′.

The “substitution effect”, that is, the welfare effect of this labor supply change, is
given by

dS(θ∗; T ,Λ) = −λ
T ′(y(θ∗; T ,Λ); Λ)

1− T ′(y(θ∗; T ,Λ); Λ)

εy,1−T ′(θ∗; T ,Λ)

εy,θ(θ∗; T ,Λ)
θ∗dT ′f(θ∗)dy

= −λ
T ′(y(θ∗; T ,Λ); Λ)

1− T ′(y(θ∗; T ,Λ); Λ)

1

φ+ 1
θ∗dT ′f(θ∗)dy,

where the last equality uses the expressions for the elasticities in (26) and (27)
and εy,θ = 1+εn,θ as well as εy,1−T ′ = εn,1−T ′ . Note that this equality also justifies
footnote 17: the density of the income distribution evaluated at a given θ∗ is
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scaled in the same way as the compensated earnings elasticity εy,1−T ′ . The scaling
therefore does not influence the overall term dS(θ∗; T ,Λ).

Next, there is a mechanical effect: households with θ > θ∗ pay dT ′dy more
taxes:

dM(θ∗; T ,Λ) = dT ′dy ×
∫ θ

θ∗
(λ− ue(θ; T ,Λ)w(θ)) f(θ)dθ,

where ue(θ; Λ) = ue(e(θ; Λ); Λ). Finally, there is an income effect: all households
with θ > θ∗ now get poorer by dT ′dy and change their income, which has a tax
revenue effect:

dI(θ∗; T ,Λ) = dT ′dy × λ

∫ θ

θ∗
T ′(y(θ; T ,Λ); Λ)η(θ; T ,Λ)f(θ)dθ.

If the tax schedule is optimal, all welfare effects have to add up to zero: dS(θ∗; T ,Λ))+

dM(θ∗; T ,Λ) + dI(θ∗; T ,Λ) = 0. This then yields the optimality condition as in
Lemma 3.

B.1.3 Homothetic Benchmark

Laissez-Faire regime. An interesting implication of Proposition 1 is that the
economy grows at the same rate as it would in a Laissez-Faire allocation. This
follows most clearly for the case of no spending: G = 0. If Pareto weights w(θ)

are such that the original allocation is Laissez Faire, then also the new allocation
after growth g is Laissez Faire. The optimal tax reform (9) is to not introduce
any tax system and all allocation variables grow at α. Hence, under homothetic
preferences, the growth rate of the economy is undistorted: real expenditures grow
at g (1 + α) as they would in a Laissez-Faire regime.

C Data

In this section, we describe the dataset we use to compute income and wealth
distributions in 1950 and 2010.

C.1 SCF+

The SCF+ provides long-run data on income and wealth inequality in the United
States. It is compiled by Kuhn et al. (2020), based on historical waves of the SCF.
The covered time period is from 1949 to 2016.

As income components in the data, we use wages and salaries, income from
professional practice and self-employment, and business and farm income. We
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exclude rental income, interest, dividends, and transfers, as we model asset income
and transfers separately from the labor income process.

For wealth, we compute net worth as the sum of all assets minus the sum of all
debts. Assets include liquid assets (checking, savings, call/money market accounts,
certificates of deposit), housing and other real estate, bonds, stocks and business
equity, mutual funds, cash value of life insurance, defined-contribution retirement
plans, and cars. Debt consists of housing debt (debt on owner-occupied homes,
home equity loans and lines of credit) and other debt (car loans, education loans,
consumer loans).

We restrict the sample to the working age population, i.e. household heads
aged 25 to 60. We impose that minimum household income is $5,000 in 2010 (in
2016 dollars). In 1950, we choose the cutoff such that the ratio of minimum income
to median income is the same as in 2010, which results in a cutoff of $2,700 (in
2016 dollars).

D Quantitative Models

D.1 Functional Forms for Taxes and Transfers

The t&T function used in Section 3.2.4 has been introduced in Ferriere et al.
(2023). As compared to the widely used loglinear tax function popularized by
Feldstein (1969), and Heathcote et al. (2017), it allows to better jointly match the
bottom and the top of the tax distribution . Loosely speaking, T is disciplined by
average tax-net-of-transfer rates and τ by the marginal tax rates at the top.

The flexible functional form with transfers modeled separately from progressive
taxes allows to capture two key developments of the U.S. t&T system over the last
decades. First, marginal tax rates have become less progressive, reflected in a lower
progressivity parameter in 2010 than in 1950 (Ferriere and Navarro 2024). Second,
transfers have risen significantly over this time period, such that average t&T rates
have become more progressive (Heathcote et al. 2020; Splinter 2020).

D.2 Calibration: Untargeted Moments

Table D.1 reports a subset of untargeted aggregate moments. Table D.2 reports
the distributions of wealth and income, both in the data and in the model, in 1950
and 2010.
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Table D.1: Untargeted Data and Model Moments

Moment Source Data Model

Agg. agriculture share 1950 Herrendorf et al. (2013) 21.5% 16.7%
Agg. goods share 1950 Herrendorf et al. (2013) 39.2% 49.1%
Agg. services share 1950 Herrendorf et al. (2013) 39.2% 34.2%
Wealth-to-income ratio 1950 Piketty et al. (2014) 3.65 3.0
Agg. fall in labor supply Ramey et al. (2009) 5-7% 7%

Notes: Table D.1 summarizes a subset of untargeted data moments and their model counterparts.

Table D.2: Income and Wealth Distributions

1950 Income Share by Quintile

Model 6% 11% 13% 21% 49%
Data (SCF+) 6% 11% 15% 21% 48%

2010 Income Share by Quintile

Model 4% 8% 12% 19% 56%
Data (SCF+) 4% 9% 13% 21% 53%

1950 Wealth Share by Quintile

Model 0% 2% 6% 17% 76%
Data (SCF+) 0% 1% 4% 11% 84%

2010 Wealth Share by Quintile

Model 0% 1% 5% 13% 81%
Data (SCF+) -1% 1% 3% 10% 87%

Notes: Table D.2 compares income and wealth shares by quintile of the respective distribution
in model and data. Data comes from the SCF+.
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D.3 Risk Aversion, Wealth Effects and MPCs

D.3.1 Relationship between Risk Aversion, Wealth Effects and MPCs

First-order intratemporal condition in the household’s optimization problem (11)
gives:

v′(n)− ue(e)θ(1− T ′(θn)) = 0, with v′(n) = Bnφ.

We implicitly differentiate this equation to obtain

v′′(n)
∂n

∂T
− uee(e)

∂e

∂T
θ(1− T ′(θn)) + ue(e)θ

2T ′′(θn)
∂n

∂T
= 0

−v′′(n)

θ
η − uee(e)θ(1− T ′(θn))× MPC − ue(e)θT ′′(θn)η = 0

−η

(
1

θ
v′′(n) + ue(e)θT ′′(θn)

)
e− uee(e)

v′(n)

ue

e× MPC = 0

−η

(
1

θ

v′′(n)

v′(n)
+

θue(e)

v′(n)
T ′′(θn)

)
e+ RRA × MPC = 0

which delivers equation (13).

D.3.2 Dynamic Model: Measurement of Wealth Effects and MPCs

Wealth effects. We compare model-implied wealth effects on household earn-
ings with evidence provided by Golosov et al. (2023). They merge data from
lottery winnings with earnings data covering the universe of U.S. taxpayers. Our
preferred measure of comparison is the average reduction in per-adult total labor
earnings in the five years following a lottery win. They report a reduction of labor
earnings by $2.3 per $100 of lottery wealth.

In the model, we expose households to a wealth shock corresponding to the
average post-tax win size reported by Golosov et al. (2023). This win size is
$181, 200 in 2016 dollars. Then, we simulate two panels of households, one of
which is exposed to this wealth shock and one of which is not. We compute the
average difference between the two groups and obtain a drop of labor earnings of
$2.1 per $100 of additional wealth.

MPCs. The empirical literature typically computes MPCs as the consumption
response to a small windfall gain. To be comparable with that approach, we expose
households in the model calibrated to the year 2010 to a one-time wealth shock
of $500. We compute MPCs as the differences in the expenditure after the wealth
shock relative to a counterfactual in which no such shock occurs. We report the
population average.

52



D.4 Mirrlees Parameterizations

Table D.3 summarizes the calibrated parameters of the Mirrlees setup we present
in Section 3.4. Preference parameters {εj;σ} rely on the micro estimates from
Comin et al. (2021), while the parameters {Ωj} are set to match aggregate sector
shares. We also keep the other parameters of the utility function, γ and φ, as
in the dynamic model. Prices are set to replicate aggregate growth and changes
in relative prices over time. We set government parameters to match transfer-to-
output ratios, spending-to-output ratios, and the difference in AMTRs between
the top-10% and bottom-90% of the distribution.

D.5 Quantitative Models: Expenditure Distributions

Table D.4 shows the expenditure distributions in the static and the dynamic model.

D.6 Pareto Weights in the Dynamic Model

The inverse optimum weights that make the 1950 t&T system optimal are high
on the top expenditure households relative to the rest of the distribution. With
parameters µ = 0.05 and ν = 116.4, the weights are flat up to the 95th percentile
of the expenditure distribution, but then strongly increase in expenditure up to
roughly 20 times the weight at the bottom. Though there is no guarantee to match
exactly the calibrated system, we come very close to matching the observed tax
system, with an optimal progressivity of 0.15 and a transfer-to-output ratio of
0.9%, relative to the calibrated values of 0.13 and 1.1%.
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Table D.3: Mirrlees Parameterization

Parameter Interpretation Baseline Higher RA

Preferences
γ Curvature utility 0.750 1.500
1/φ Frisch elasticity 0.500 0.500
B Labor disutility 13.000 52.000
σ NH CES parameter 0.300 0.300
εA NH CES parameter 0.100 0.100
εG NH CES parameter 1.000 1.000
εS NH CES parameter 1.800 1.800
ΩA NH CES parameter 0.093 0.093
ΩG NH CES parameter 1.000 1.000
ΩS NH CES parameter 2.400 2.600

Prices
p1950A Price agriculture 1950 1.000 1.000
p1950G Price goods 1950 1.000 1.000
p1950S Price services 1950 1.000 1.000
p2010A Price agriculture 2010 0.274 0.229
p2010G Price goods 2010 0.147 0.123
p2010S Price services 2010 0.464 0.387

Inequality
α1950 Pareto tail 1950 4.400 4.400
α2010 Pareto tail 2010 3.300 3.300
σ1950
a EMG parameter 1950 0.350 0.481

σ2010
a EMG parameter 2010 0.480 0.640

Government
λ1950 Tax function level 1950 0.242 0.243
τ 1950 Tax function progressivity 1950 0.160 0.160
T 1950 Transfer 1950 0.004 0.003
G1950 Government spending 1950 0.043 0.041
λ2010 Tax function level 2010 0.225 0.238
τ 2010 Tax function progressivity 2010 0.095 0.095
T 2010 Transfer 2010 0.011 0.009
G2010 Government spending 2010 0.042 0.033

Notes: Table D.3 summarizes the calibrated parameters of the Mirrlees setup, for both the
benchmark calibration and the robustness calibration with higher risk aversion.
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Table D.4: Expenditure Distribution in the Dynamic and the Static Model

1950 Expenditure Share by Quintile

Dynamic model 8% 13% 17% 23% 39%
Static model 9% 13% 17% 23% 38%

2010 Expenditure Share by Quintile

Dynamic model 7% 11% 16% 21% 45%
Static model 7% 12% 16% 23% 43%

Notes: Table D.4 compares the expenditure distributions in the static and the dynamic model.
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