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Abstract
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on simple history-independent tax instruments. We first analyze the welfare losses from
this simplification as compared to optimal history-dependent policies. We find very small
losses from restricting the complexity of savings wedges. Eliminating history dependence
of labor wedges leads to larger welfare losses: moving from history dependence to age
dependence yields approximately the same welfare losses as moving from age dependence
to age independence and from nonlinear to linear income taxation. For optimal history-
independent taxes, we provide a novel decomposition into a redistribution and an insurance
component and a generalization of the top tax formula to dynamic environments. Capital
taxation is desirable and yields sizable welfare gains, especially if labor income taxes are
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1 Introduction

This paper characterizes Pareto optimal labor and capital income taxation with heterogenous
individuals in a life cycle framework. Consistent with a large empirical literature, individuals
face idiosyncratic labor income risk.1 Consistent with real world tax policies, we characterize
relatively simple tax policies that only condition on current earnings. The labor income tax
is allowed to be fully nonlinear in the tradition of the seminal approach to optimal taxation
by Mirrlees (1971). The tax on wealth (or equivalently capital income) is constrained to be
linear in the tradition of dynamic Ramsey models.2 To make the problem theoretically and
computationally tractable, we employ a novel first-order approach for these simple policies in
a dynamic, stochastic environment.

Since the pioneering theoretical work by Mirrlees (1971), a comprehensive literature has
emerged which specializes on characterizing optimal labor income taxation. Recent papers have
shown that labor supply elasticities and the distribution of income/abilities are the key forces
determining optimal nonlinear income tax schedules (Piketty 1997, Diamond 1998, Saez 2001).
A relatively recent literature, often called the New Dynamic Public Finance (NDPF), has
expanded the classical approach and explicitly taken into account dynamics and risk. This has
enabled the literature to make statements about savings distortions (Golosov, Kocherlakota,
and Tsyvinski 2003), as well as to study the implications of idiosyncratic risk over the life cycle
for optimal labor wedges (Golosov, Troshkin, and Tsyvinski 2013, Farhi and Werning 2013).
The NDPF literature has focused on history-dependent labor income taxes, so that taxes paid
on labor income can potentially depend on the whole history of past earnings.

In contrast, we restrict labor income taxation to be history-independent in this paper. This
can be seen as the next logical step after the recent advances in the literature in exploring
optimal taxation in dynamic economies and complements the NDPF literature and the static
optimal taxation approach. One advantage of such an endeavor is that the instruments we
characterize are within the realm of current tax practices.3

Formally, let yt be the income of an individual in period t (or, equivalently, at age t) and θt
be the productivity in that period. As emphasized by the NDPF literature, in the constrained
optimal allocation, gross income is a function of the whole history of shocks θt = (θ1, θ2, ..., θt)

and these allocations are derived with dynamic mechanism design techniques. Decentral-
1Meghir and Pistaferri (2011) and Jappelli and Pistaferri (2010) provide recent surveys of the empirical

literature.
2See, for example, Conesa, Kitao, and Krueger (2009) and Aiyagari (1995). Whereas labor income is taxed

nonlinearly in most countries of the world, capital is often taxed at a linear rate. This practice is often linked
to arbitrage opportunities in the case of capital. If individual A face a higher marginal tax rate on savings
than individual B, there would be a deal where both could be better of by making individuals B save individual
A’s money. The assumption of linear capital taxes can therefore be grounded on the idea that the government
cannot observe consumption on the individual level and is often made in the public finance literature. See
Hammond (1987) for a more general theoretical discussion of that issue.

3Social insurance and tax practices in most countries typically combine history-dependent and history-
independent elements. For personal income taxes, tax policies are arguably better described as being mostly
history-independent, however, various forms of tax deductions also generate diverse forms of history dependence
in the labor and capital income tax codes.
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izing such an allocation typically requires taxes that condition on the history of incomes
yt = (y1, y2, ..., yt).4 History-independent labor income taxes, i.e. taxes that condition only
on yt, can in general not implement the desired allocations. Thus, history independence places
additional restrictions on allocations. To the best of our knowledge, no previous paper has so
far investigated and characterized such arguably realistic optimal labor income tax systems in
a dynamic and stochastic Mirrlees environment with a continuous type space.

We show that assuming preferences without income effects on labor supply makes this prob-
lem tractable. If labor income taxes are only a function of current income yt, the income that
individuals optimally choose in a decentralized economy only depends on their current produc-
tivity θt and not on accumulated wealth. For the allocation, this implies that income is solely a
function of θt and not of θt. A second advantage of this specification is that the Hessian matrix
of the individual problem has a zero minor diagonal. This makes a first-order approach valid
under a mild monotonicity condition on yt(θt) as in the static Mirrlees model. As we show in
the main body of the paper, these considerations make it possible to solve for optimal nonlinear
labor and linear capital income taxes.

Having spelled out our formal approach, our analysis then proceeds in two broader steps.
We first compare optimal history-independent taxes theoretically and quantitatively to more
complex history-dependent policies but also to simpler linear policies. We provide welfare
comparisons and also study how losses and gains from more complex (or even simpler) policies
are distributed. In the second main part of the paper, we look in detail at the main properties
and characteristics of optimal history-independent taxes.

From History Dependence to Simpler Policies. We start by comparing optimal history
independent taxes theoretically and quantitatively to alternative tax structures. We begin with
the solution to the dynamic mechanism design problem, in which allocations are restricted
only by informational constraints (Golosov, Troshkin, and Tsyvinski 2013, Farhi and Werning
2013). We refer to this solution as the full optimum. We then proceed step by step, imposing
additional constraints on capital and labor wedges in each step and thereby making the resulting
tax system simpler. We theoretically characterize labor and capital wedges for the different
scenarios, fleshing out in detail the implications of each additional restriction on complexity.
Quantitatively, we explore how much welfare is lost at each stage, where our welfare criterion
is Utilitarianism. We also provide a very detailed view on the distributional consequences of
each scheme by looking at the welfare losses and gains across all income groups.

Starting from the full optimum, the first modification is to restrict the savings wedge to be
linear and history-independent, while labor wedges remain history-dependent and nonlinear.
This scenario has not been considered before in the literature and, importantly, it allows us
investigate whether the power to raise welfare in the full optimum is stemming from the so-

4See Kocherlakota (2004) or Werning (2011). For a counterexample, see Albanesi and Sleet (2006) who
show that for the special case of i.i.d. shocks simpler tax instruments suffice. See also our discussion in the
related literature paragraph.
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phistication of labor or capital wedges. The aggregate welfare losses from this restriction on
simple capital wedges are very small. Next, we additionally restrict the ability of the planner
to condition labor wedges on past skill shocks or earnings. We use our first-order approach to
derive new formulas for optimal age-dependent income tax schedules and optimal linear savings
taxes. Aggregate welfare losses measured in standard consumption equivalence relative to the
full optimum are now significant, varying between 0.12% for log utility and 0.43% for a CRRA
parameter of three.5 This reveals that most of the benefits of the full optimum are explained
by the history dependence and sophistication of the labor wedges and not by nonlinearities and
history dependence in capital wedges.

Next, consistent with the previous steps, we further restrict labor taxes, and constrain them
to depend on current income only. Arguably, many countries have labor tax systems, which
share these features, namely that labor tax burdens are mostly determined by current income
and labor income is taxed at nonlinear rates. Aggregate welfare losses relative to the full opti-
mum vary between 0.23% for log utility and 0.70% with a CRRA parameter of three for optimal
history-independent labor and linear capital taxes. Finally, our last simplification restricts the
labor income tax to be linear and helps to understand the importance of nonlinearities of the
labor income tax schedule. For this case, the aggregate welfare losses compared to the full
optimum range from 0.29% to 1.09%.

Strikingly, one of the main conclusions of these welfare comparisons is that they imply
approximately equal aggregate welfare differences: moving from the full optimum to age-
dependent taxes, from age-dependent to age-independent, and from age-independent to linear
tax rates entails welfare losses in each step that are very similar in size.

In our analysis, we also thoroughly inspect the distributional consequences of sophistication
and simplicity of the different tax schemes by looking at the welfare changes for different initial
income/skill groups. The most salient finding for this distributional perspective is that moving
from an optimal nonlinear tax system to the linear one, leads to very unequally distributed
losses. In the lower tail of the income distribution, the welfare losses from linearity restrictions
can become very large and are around 4%.

Optimal Simple Tax Instruments. In the second main part of the paper, we look in detail
at the main properties and characteristics of optimal history-independent taxes. First, our
framework allows to investigate the interaction between labor and capital taxation, which is
not possible in the static Mirrlees model. This interaction is, in general, also not studied in
a dynamic Mirrlees approach, since both labor and capital wedges are part of the dynamic
mechanism design solution. We examine optimal labor income taxes for a given capital tax
and vice versa. Strikingly, we find that for given labor income taxes, optimal capital tax
rates differ substantially, depending on how labor income taxes are set. This depends on two
mechanisms. First, lower labor income taxes lead to a more concentrated distribution of wealth

5We compare our results on welfare gains and losses to other relevant papers (Weinzierl 2011, Farhi and
Werning 2013) in the main text.
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which increases the redistributive power of capital income taxes. Second, the lower degree
of social insurance through labor income taxation, the stronger the desire to self insure in the
form of precautionary savings and the lower the elasticity of savings w.r.t. capital income taxes.
Conducting the opposing exercise, we find that optimal marginal labor income tax rates are
decreasing in the level of capital taxation, the quantitative effect is very small, however.

Since the pathbreaking paper of Mirrlees (1971) an enormous literature has studied the
static optimal tax problem. A natural question is to what extent the main prescriptions from
the static model carry over to a dynamic model with income risk? First we show that an
important difference to the static (or dynamic deterministic) perspective is that the so called
mechanical effect of taxation – which measures the welfare effect from redistribution – does not
only measure welfare gains from redistribution between ex-ante heterogeneous individuals but
also from social insurance against idiosyncratic wage risk in dynamic economies with incomplete
markets. We derive a decomposition of the mechanical effect into an insurance component and
a redistribution component. The former is independent of redistributive preferences and is
increasing in income risk and risk aversion.

We then put our focus on two influential sets of results, which have proven to be extremely
useful in understanding properties of the optimal static schedules. First, we investigate con-
ditions determining the shape of optimal tax rates, as pioneered by Diamond (1998) for the
static model. Second, we generalize the top tax formula by Saez (2001) to the multi-period
environment, which is valid if the tail of the income distribution is Pareto distributed.

Related Literature. The present paper is related to the NDPF literature. Particularly, two
recent articles by Golosov, Troshkin, and Tsyvinski (2013) and Farhi and Werning (2013) have
characterized optimal history-dependent labor wedges and to this end made use of new dynamic
first-order approaches to make the problem tractable.6 In complementary work, Kapicka (2013)
develops a first-order approach for a general Mirrleesian setting with persistent productivity
shocks. These recent important advances are complementary to the present paper because we
show how to make progress for simpler, history independent tax systems under the assumption
of no-income effects. This parallels the contribution by Diamond (1998), who also assumes
no-income effect to gain novel insights into the static Mirrlees model. His formulas are also the
natural comparison for the optimal marginal tax rates formulas that we derive for the dynamic
model. In an earlier contribution to the NDPF, Albanesi and Sleet (2006) show that a relatively
simple labor tax system can implement the second-best in the i.i.d. case: wealth dependent
labor income taxation. By contrast, this paper studies the case of persistent shocks.7

There is a small but growing literature on age-dependent income taxation. Most recent and
related to our work, Weinzierl (2011) and Bastani, Blomquist, and Micheletto (2013) study

6Related to these papers and ours, Pavan, Segal, and Toikka (2013) characterize a first-order approach in
very general, dynamic environments.

7 Jacobs and Schindler (2012) show that in a two-period model with linear labor taxes, a similar role for the
capital tax as in the NDPF -literature arises as capital taxes have the positive effect of boosting labor supply in
the second period.
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optimal age-dependent labor income taxation.8 These papers focus on numerical results and
work with a small discrete type space. Our innovation and contribution to this literature is
that our first-order approach allows to study a continuous-type framework. We are, thus, able
to optimize over a fully nonlinear labor income tax schedule that is well defined for each income
level. We are able to characterize this tax schedule theoretically and numerically connecting our
results precisely to the contributions by Diamond (1998) and Saez (2001) for a static framework
and Golosov, Troshkin, and Tsyvinski (2013) for a NDPF framework.

Also studying age dependency as well as standard income taxes, Best and Kleven (2013)
augment the canonical optimal tax framework by incorporating career effects into a two period
model with certainty. By contrast, we place our focus on a risky and dynamic economy, a
standard NDPF framework calibrated to empirical estimates of income risk, but leave out
human capital.9

This paper is also related to Golosov, Tsyvinski, and Werquin (2014), who study general
dynamic tax reforms and elaborate the welfare gains from the sophistication of the tax code
such as age dependence, history dependence or joint taxation of labor and capital income.
Similar as them, we study the design of taxes in dynamic environments by directly taking into
account individual responses to taxes instead of using mechanism-design techniques.

Structure. This paper is organized as follows. In Section 2, we spell out the formal framework
and briefly explain the calibration. As explained above, in Section 3, we step by step make
the tax system simpler, allowing less degrees of sophistication, starting from the full optimum.
At each step we provide a theoretical discussion and a detailed analysis of the implied welfare
changes. Section 4 then explores optimal history-dependent taxes in depth. In Section 5 we
conclude.

2 The Framework

2.1 Environment

We consider a life cycle framework with T periods where individuals at any point in time t are
characterized by their productivity θt ∈ Θ = [θ, θ].10 Further, we denote the history of shocks
by θt = (θ1, θ2, . . . , θt). Flow utility is given by

U(ct, yt, θt) = U

(
ct −Ψ

(
yt
θt

))
,

8Blomquist and Micheletto (2008) is an important earlier paper in this literature.
9Dynamic tax models with human capital are, for example, found in Kapicka and Neira (2013), Findeisen

and Sachs (2013) and Stantcheva (2013). Kapicka (2006) looks at a dynamic deterministic environment with
unobservable human capital and constrains the labor income tax to be history independent in a similar spirit
as in our paper.

10For notational convenience, we assume that the support of θt does not change over time. Allowing for a
moving support would be a straightforward extension.
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where we assume U ′ > 0, U ′′ < 0, and the Inada condition lim
x→0

U ′(x) = ∞, and Ψ′,Ψ′′ > 0. ct
is consumption in period t and yt is gross income in period t and yt

θt
captures labor effort.

Abusing notation, we sometimes write the utility function or its derivatives as a function of
the history of shocks only, i.e. U(θt), U ′(θt) and U ′′(θt). When we present optimal tax formulas,
we denote by ε the labor supply elasticity and sometimes suppress the dependence of ε on the
current skill type, consistent with the utility functions we use for the simulations, where the
elasticity is constant – see below. As our appendix reveals, the theoretical results are more
general and apply also to utility functions where the elasticity changes with the skill type and
taxes.

The yearly discount factor is denoted by β. Importantly, the functional form of U eliminates
income effects on labor supply, while allowing for risk-aversion.11 This assumption is crucial
for the tractability of the dynamic optimal tax problem with simple instruments as we describe
in detail in Section 2.2.3. Eliminating income effects has also proven to be a key simplification
in making progress on the theoretical and computational side in public finance models and
especially in optimal tax problems, see e.g. Diamond (1998).

We assume that agents already differ in the first period. The conditional density function
(cdf ) of the initial distribution of productivities is denoted by F1(θ1) and captures the ex-
ante heterogeneity of agents. The reader should think about this heterogeneity as the level
of heterogeneity of individuals at age of roughly 25. In the following periods, productivities
evolve stochastically over time according to a Markov process. The respective cdf is Ft(θt|θt−1).
Denote by ht(θt) the probability of history θt, i.e. ht(θt) = ft(θt|θt−1)ft−1(θt−1|θt−2).....f1(θ1).
We assume that all conditional density functions are continuously differentiable. Denote by Θt

the set of possible histories in t. Further, we denote by ft(θt) the cross-sectional skill distribution
at age t.

2.2 The Planner’s Problem in the Different Scenarios

The preferences of the social planner are described by the set of Pareto weights {f̃1(θ1)}θ1∈[θ,θ].
The cumulative Pareto weights are defined by F̃1(θ1) =

∫ θ1
θ
f̃1(θ̃1)dθ̃1. The set of weights are

restricted such that F̃1(θ) = 1. Different sets of Pareto weights refer to different points on the
Pareto frontier. The set of weights where f̃1(θ1) = f1(θ1) ∀ θ1, e.g., refers to the Utilitarian
planner. Similar as ht(θt), define h̃t(θt) = ft(θt|θt−1)ft−1(θt−1|θt−2).....f̃1(θ1) to express the
Pareto weight for individuals with history θt. The planner can shift resources across periods
at interest rate r. We assume β(1 + r) = 1, which does not come at the expense of generality
but simplifies the exposition. We now describe the problems of the different policy scenarios
considered in detail.

11The empirical literature using detailed micro data sets has typically not rejected a zero income elasticity
on labor supply or found very small effects (see Gruber and Saez (2002) for the US or a recent paper by Kleven
and Schultz (2013) using the universe of Danish tax records).
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2.2.1 Full History Dependence

We start by stating the mechanism-design problem that is often referred to as the Dynamic
Mirrlees or the New Dynamic Public Finance Approach. This case has recently been extensively
studied by Farhi andWerning (2013) and Golosov, Troshkin, and Tsyvinski (2013). The purpose
of our presentation of the problem is therefore not novelty but to set an upper bound for welfare
to which we can compare the power of simpler tax instruments.

In this case, the planner assigns consumption-income bundles ct(θt), yt(θt) ∀ t = 1, ..., T and
∀θt ∈ Θt that maximize welfare

T∑
t=1

βt−1

∫
Θt
U

(
ct(θ

t)−Ψ

(
yt(θ

t)

θt

))
h̃t(θ

t)dθt

subject to a resource constraint

T∑
t=1

1

Rt−1

∫
Θt

(
yt(θ

t)− ct(θt)
)
ht(θ

t)dθt

and subject to incentive compatibility constraints for each θ1 ∈ Θ and each reporting strategy
σ(θt)

U

(
c1(θ1)−Ψ

(
y1(θ1)

θ1

))
+

T∑
t=2

βt−1

∫
Θt(θ1)

(
U(ct(θ

t)−Ψ

(
yt(θ

t)

θt

))
ht(θ

t)dθt (1)

≥ U

(
c1(σ(θ1))−Ψ

(
y1(σ(θ1))

θ1

))
+

T∑
t=2

βt−1

∫
Θt(θ1)

(
U(ct(σ(θt))−Ψ

(
yt(σ(θt))

θt

))
ht(θ

t)dθt

where Θt(θ1) is the set of all possible histories in period t that contain θ1. Farhi and Werning
(2013) and Golosov, Troshkin and Tsyvinski (2013) have shown how to make this problem
tractable with a dynamic first-order approach that builds on Pavan, Segal, and Toikka (2013),
Kapicka (2013) and others. See Appendix A.1 for the Lagrangian and the solution of this
problem. In Section 3.1, we discuss theoretical and quantitative properties of this optimum.

2.2.2 History-Dependent Labor Wedges and Linear Capital Wedges

The set of simple policy instruments that are at the heart of this paper differs from the
full mechanism-design solution as follows: labor income taxes are constrained to be history-
independent and capital taxes are constrained to be history-independent and linear. To better
understand the welfare implications of each of these restrictions, we also consider an interme-
diate case were only the latter restriction applies.

In this intermediate case, the planner solves a problem that only differs from that in Sec-
tion 2.2.1 by the following additional restriction:
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∀ θt : U ′(θt) = (1− τs)
∫

Θ

U ′(θt, θt+1)dFt+1(θt+1|θt). (2)

Given the linearity constraint for the capital wedge, the planner has to respect an Euler equation
that is adjusted by the linear wedge τs which itself is also a choice variable of the planner.12

Golosov and Tsyvinski (2007) study a similar problem and investigate the desirability of a
linear capital distortion in the presence of endogenous private insurance markets and general
equilibrium effects. In Appendix A.2 the Lagrangian and the solution of this problem are
stated. In Section 3.2, we discuss theoretical and quantitative properties of this optimum.

2.2.3 History Independence: Age-Dependent and Age-Independent Labor Income
Taxation

We next relax the history dependence of the labor wedge. One consequence is that the labor
wedge can now be directly interpreted as a marginal tax rate on labor income. Our notation in
this section nests age-dependent and age-independent taxation. For the age-independent tax
problem one has to drop the subscript t, i.e. write T and y instead of Tt and yt.

Individual Problem Given Taxes. Each period, individuals make a work and savings
decision. Formally, the recursive problem of individuals given age-dependent labor income
taxes {Tj}j=t,...,T and a linear capital tax rate τs reads as:

Vt(θt, at, {Tj}j=t,...,T , τs) = max
at+1,yt

U

(
yt − Tt(yt) + (1 + r)(1− τs)at − at+1 −Ψ

(
yt
θt

))
+ βEt [Vt+1(θt+1, at+1, {Tj}j=t+1,...,T , τs)] , (3)

where a1 = 0 and aT ≥ 0.13 Based on the assumption on preferences, the following lemma
directly follows.

Lemma 1. The optimal gross income yt that solves (3) is independent of assets, the capital
tax rate τs and future labor income taxes {Tj}j=t+1,...,T . It is thus only a function of the current
shock and of the current labor income tax: yt(θt, Tt).

This greatly simplifies the optimal tax analysis. For the resulting allocation, this implies
that yt is only a function of θt and not of θt. The savings decision of individuals, in contrast,
will depend on all state variables: at+1(θt, at, {Tj}j=t,...,T , τs). Recursively inserting, one can also

12In our numerical simulations the problem always was concave in τs.
13We allow agents to borrow up to natural debt limit (see Aiyagari (1994)). There are two differences

to Aiyagari (1994): First, labor supply is endogenous; the minimal amount of future earnings in period s

is
∑T
t=s yt(θ). Second, individuals would actually not even borrow that much as repaying everything and

consuming nothing would yield a negative argument in U (·) because of the disutility of labor. This can never
be optimal as the marginal utility would be infinite whenever the argument in U (·) is zero under standard inada
conditions. Therefore, in the absence of taxes, the maximal amount of debt is

∑T
t=s

(
yt(θ)−Ψ

(
yt(θ)
θ

))
.
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write at+1(θt, {Tj}j=1,...,T , τs), which implies that assets are a function of the history of shocks:
at+1(θt).

The Social Planner’s Problem. The social planner’s problem reads as:

max
{Tj}j=t,...,T ,τs

∫
Θ

V1(θ1, 0, {Tj}j=1,...,T , τs)dF̃1(θ1), (4)

where V1(θ1, 0, {Tj}j=1,...,T , τs) is the solution to (3) for each θ1 and subject to an intertemporal
budget constraint:

T∑
t=1

1

(1 + r)t−1

∫
Θ

Tt(yt(θt))dFt(θt)

+
T∑
t=2

1

(1 + r)t−1

∫
Θt−1

τs(1 + r)at(θ
t−1, {Tj}j=1,...,T , τs)ht−1(θt−1)dθt−1 ≥ R, (5)

where R is some exogenous revenue requirement of the government and at(θt−1, {Tj}j=1,...,T , τs)

is the amount of savings of individuals with history θt−1 that optimally follows from (3).
The presence of constraint (3) makes it difficult to tackle the problem with conventional

Lagrangian or optimal control techniques. We argue next that (3) can be replaced by a set of
first-order conditions for at+1 and yt and a monotonicity condition on yt.

First-Order Approach. In the remainder of this paper, we will suppress the dependence of
assets and gross income on taxes. We will thus write yt(θt) instead of yt(θt, Tt) and at(θ

t−1)

instead of at(θt−1, {Tj}j=1,...,T , τs).
We now want to show how (3) can be replaced by two first-order conditions and a monotonic-

ity constraint. The set of first-order conditions for the individual problem (3) are standard.
For the labor supply decision, we have ∀t and ∀θt ∈ Θ :

1− T ′t (yt(θt)) = Ψ′
(
yt(θt)

θt

)
1

θt
. (6)

For the savings decision, we have ∀t = 1, ..., T − 1 and ∀θt ∈ Θt :

U ′
(
yt(θt)− Tt(yt(θt))− at+1(θt) + (1− τs)at(θt−1)−Ψ

(
yt(θt)

θt

))
=(1− τs)

∫
Θ

U ′

(
yt+1(θt+1)− Tt+1(yt+1(θt+1))− at+2(θt, θt+1)

+ (1− τs)at+1(θt)−Ψ

(
yt+1(θt+1)

θt+1

))
dFt+1(θt+1|θt). (7)
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These conditions are only necessary and not sufficient for the agents’ choices to be optimal. Due
to the assumption about preferences, however, the second-order conditions are of particularly
simple form. The derivative of the first-order condition of labor supply with respect to con-
sumption, i.e. the cross derivative of the value function, is zero. By symmetry of the Hessian,
the same holds for the derivative of the Euler equation with respect to labor supply. Thus,
the minor diagonal of the Hessian matrix contains only zeros. For (6) and (7) to represent a
maximum, only the second derivatives of the value function with respect to labor supply and
consumption have to be ≤ 0. For labor supply, a familiar argument from the standard Mirrlees
model implies that this holds if and only if14

y′t(θt) ≥ 0. (8)

The second-order condition for savings is always fulfilled due to concavity of the utility function.
Hence, (6) and (7) represent a maximum whenever y′t(θt) ≥ 0. As y′t(θt) ≥ 0 even implies global
concavity, (6) and (7) represent a global maximum if y′t(θt) ≥ 0 holds.

In a final step, we make use of a change of variables and define Mt(θt) = yt(θt)− Tt(yt(θt)).
Applying this for (6) is still problematic as it contains T ′t , however. To tackle this problem, we
make use of the following derivative

∂
(
yt(θt)− Tt(yt(θt))−Ψ

(
yt(θt)
θt

))
∂θt

= y′t(θt)(1− T ′t (yt(θt)))−Ψ′
(
yt(θt)

θt

)[
y′t(θt)

θt
− yt(θt)

θ2
t

]
.

Inserting (6) into this derivative yields:

∂
(
yt(θt)− Tt(yt(θt))−Ψ

(
yt(θt)
θt

))
∂θt

= Ψ′
(
yt(θt)

θt

)
yt(θt)

θ2
t

. (9)

Thus, (9) is equivalent to (6). Now, we apply the change of variablesMt(θt) = yt(θt)−Tt(yt(θt)),
which leads to a problem that can be solved with calculus of variation or optimal control:

Proposition 1. Instead of choosing {Tt}t=1,...,T and τs to maximize (4) subject to (5) and (3),
the planner can also choose {{Mt(θt), yt(θt)}θt∈Θ, {at(θt−1)}θt−1∈Θt−1}t=1,...,T and τs subject to
(5), (9), (7) and (8), where yt(θt)− Tt(yt(θt)) = Mt(θt).

The approach can also be interpreted as a restricted direct mechanism that is augmented by
a savings choice. Agents report their type θt and the planner assigns bundles (Mt(θt), yt(θt))

– it is a restricted mechanism because the planner cannot make Mt and yt conditional on the
history of shocks.

We provide the Lagrangian and the first-order conditions for this problem in Appendix B.1.
When solving for optimal policies, we do not incorporate the monotonicity constraint (8) into

14See, e.g., Salanié (2003, p.87 ff).
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the Lagrangian, as is standard practice in the optimal tax literature. In the numerical simula-
tions we ex-post check whether the monotonicity condition is fulfilled or not.

2.3 Calibration and Primitives

There is large literature on the estimation of earnings dynamics over the life cycle – see Meghir
and Pistaferri (2011) and Jappelli and Pistaferri (2010) for recent surveys. For the parameteri-
zation of our model, we use the recent empirical approach taken by Karahan and Ozkan (2013).
In their analysis, they estimate the persistence of permanent shocks as well as the variance of
permanent and transitory income shocks for US workers. Innovatively, and in contrast to most
previous work in this strand of the literature, they allow these parameters to be age-dependent
and to change over the life cycle. They find two structural breaks in how the key parameters
change over the life cycle, giving three age groups, in which income dynamics are governed by
the same risk parameters.

We base our parameterization on their results. Given the estimates of Karahan and Ozkan
(2013) for the evolution of income over the life cycle15, we simulate millions of labor income
histories. We describe this in more detail in Appendix C. After having simulated those earnings
histories using a sufficient number of draws, we partition individuals into three age-groups,
namely 24-36, 37-49 and 50-62, which represent periods one, two and three respectively. Last, we
calibrate the cross sectional income distributions for each age group and the respective transition
probabilities. Figure 8 in Appendix C shows the three cross-sectional income distributions for
each age group. To complete the parametrization of the model, we calibrate all conditional
skill distributions from their income counterparts, as pioneered by Saez (2001).16

We assume that the utility function is of the form

U(c, y, θ) =

(
c− ( yθ )

1+1
ε

1+ 1
ε

)1−ρ

1− ρ
.

For the benchmark, we set ε = 0.33 (Chetty 2012). Our conclusions from the simulations are
not sensitive to the choice of the labor supply elasticity. We let ρ vary between 1 (log utility)
and 3. The annual interest rate is 3% so in our simulations, we set r = 1.0313 − 1 and adjust
the discount factor such that β(1 + r) = 1.

3 From The Full Optimum to Simpler Policies

We now compare optimal history independent taxes theoretically and quantitatively to more
complex history-dependent policies but also to simpler linear policies. All derivations are del-

15We gratefully acknowledge that they shared some estimates with us that are not directly available from
their paper.

16We back out the skill from the first-order condition of individual labor supply given an approximation of
the current US-tax system, a linear tax rate of 30%.
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egated to the appendix. We provide welfare comparisons using a Utilitarian social welfare
function but also study how losses and gains from more complex (or even simpler) policies
are distributed across different skill groups. We proceed step by step, starting out with the
information-constrained optimum, making policies less sophisticated in each step.

3.1 Full History Dependence

The first case provides the planner with the most sophisticated instruments. The wedges we
characterize are part of the solution to the mechanism design problem, where agents reveal their
type in each period. The cross-sectional properties of optimal history-dependent distortions
have been recently characterized by Golosov, Troshkin, and Tsyvinski (2013). Our formulas
for utility functions without income effects can be seen as special cases of theirs. The purpose
of this section is hence not novelty but to build the benchmark, from which we restrict the
available instruments of the planner step by step. The labor wedge in the full optimum is given
by:

τFLt(θ
t)

1− τFLt(θt)
=

(
1 +

1

ε

)
1

θtft(θt|θt−1)

∫ θ

θt

exp

(∫ x

θ

γt(θ
t−1, s)

1

s
ds

)
U ′(θt)

{
ft(x|θt−1)

(
1

U ′t(θ
t−1, x)

− 1

U ′t−1(θt−1)

)
+

τFL,t−1(θt−1)

1− τFL,t−1(θt−1)

(
1 +

1

ε

)−1

θt−1
1

U ′t−1(θt−1)

∂ft(x|θt−1)

∂θt−1

−
τFL,t−1(θt−1)

1− τFL,t−1(θt−1)

(
1 +

1

ε

)−1

θt−1
1

U ′t−1(θt−1)
ft(x|θt−1)γt−1

1

θt−1

}
dx, (10)

where as in Golosov, Troshkin, and Tsyvinski (2013)17

γt(θ
t) = Ψ′

(
yt(θ

t)

θt

)
yt(θ

t)

θt

U ′′t (θt)

U ′t (θt)
< 0.

See Golosov, Troshkin, and Tsyvinski (2013) for a detailed theoreticaldiscussion of the labor
wedge in the full optimum. Figure 1(a) shows the labor wedges in the second period for three
different income histories (10th, 50th and 90th percentile in the earnings distribution when
young). In line with Golosov, Troshkin, and Tsyvinski (2013), wedges are higher for higher
earnings histories. The same is true for optimal savings wedges as illustrated in Figure 1(b).

17In Appendix A.1.1, we show how to precisely connect our formula to their formula.
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Figure 1: Wedges in the Full Optimum (Middle-Aged, Conditional on Young Earnings)

3.2 History-Dependent Labor Wedges and Linear Capital Wedges

We now consider the policy scenario stated in Section 2.2.2 where only capital wedges are
constrained to be linear and history-independent. The linearity restriction on the capital wedge
has the following implication on optimal labor wedges:

τRLt(θ
t)

1− τRLt(θt)
=

τF∗Lt (θt)

1− τF∗Lt (θt)
+

(
1 +

1

ε

)
1

θtft(θt|θt−1)

∫ θ

θt

exp

(∫ x

θ
γt(θ

t−1, s)
1

s
ds

)
U ′(θt)

{
U ′′t (θt−1, x)

U ′t(θ
t−1, x)

(
∆µt(θ

t−1, x)(1− τRs )ft(x|θt−1) + µt(θ
t−1, x)(1− (1− τRs )ft(x|θt−1)

)
− βft(x|θt−1)

U ′′t−1(θt−1)

U ′t−1(θt−1)

(
∆µt−1(θt−1)(1− τRs )ft−1(θt−1|θt−2) + µt−1(θt−1)(1− (1− τRs )ft−1(θt−1|θt−2)

)}
dx,

(11)

where µt(θt) is the multiplier on the linear intertemporal wedge constraint (2), ∆µt(θ
t−1, θ) =

µt(θ
t−1, θ) − µt−1(θt−1) is the change in the multiplier for a given history and τF∗Lt (θt) is labor

wedge formula for the full optimum (10), where the autoregressive component from τF∗Lt (θt) is
evaluated at the past labor wedge from the restricted problem now.18

18Formally:

τF∗Lt (θt)

1− τF∗Lt (θt)
=

(
1 +

1

ε

)
1

θtft(θt|θt−1)

∫ θ

θt

exp

(∫ x

θ

γt(θ
t−1, s)

1

s
ds

)
U ′(θt)

{
ft(x|θt−1)

(
1

U ′t(θ
t−1, x)

− 1

U ′t−1(θt−1)

)

+
τRL,t−1(θt−1)

1− τRL,t−1(θt−1)

(
1 +

1

ε

)−1

θt−1
1

U ′t−1(θt−1)

∂ft(x|θt−1)

∂θt−1

−
τRL,t−1(θt−1)

1− τRL,t−1(θt−1)

(
1 +

1

ε

)−1

θt−1
1

U ′t−1(θt−1)
ft(x|θt−1)γt−1

1

θt−1

}
dx.
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The labor wedge is equal to the formula from the full optimum plus additional terms (line 2
and 3), capturing the effect of the labor distortion on the linear capital wedge constraint (2).
We can get a better understanding by looking at the first-order condition for τRs :

−
T−1∑
t=1

∫
Θt
µt(θ

t)

∫
θt+1

U ′t+1(θt, x)dFt+1(x|θt)dθt = 0.

Note that µt(θt) gives the welfare gain of slightly relaxing the Euler equation in the sense of
letting an individual with history θt save slightly less. Thus, if µt(θt) is positive, this implies
that the planner would like to impose a higher savings wedge on individuals with history θt.
The opposite is true for a negative value of µt(θt). Intuitively, imposing the same intertemporal
wedge on all individuals forces the planner to restrict some types less than she would like and
some types more than she would like. In the labor wedge formula (11), the planner takes
into account how the labor wedge relaxes or tightens the Euler constraints. As it turns out,
however, the quantitative implications of these additional terms, however, are relatively small.
Optimal labor wedges are very similar to those in the full optimum, which is why we refrain
from illustrating them in a graph. What differs more strongly are the capital wedges. The
optimal linear capital wedge is 6.4%. In the full optimum, the average capital distortion was
4.6% in period one and 7.6% in period two. Intuitively, the planner now has to compromise by
choosing some average value.

What are the welfare implications of restricting savings wedges to be linear and history-
independent? We find that the implied aggregate welfare losses from this modification are very
moderate; between 0.02% and 0.13% (constant relative risk aversion ranging from 1 to 3) in
consumption equivalents. Also the distributional impact is relatively small, initially high-ability
individuals tend to gain a bit as their savings wedges are in general reduced relative to the full
optimum and the opposite holds for initially low-ability individuals. Like the aggregate losses,
the losses across the skill distribution are very modest. In sum, the welfare consequences of
restricting the complexity of optimal intertemporal wedges are small. In the next step we relax
the sophistication of the labor wedge.

3.3 Age-Dependent Labor Taxation

We now remove history dependence in the labor wedge. The labor income tax can condition on
age t. The capital tax is linear and age-independent, as the savings wedge was in the previous
case. We now present a novel formula for the optimal age-dependent marginal tax rate in
continuous models:

Proposition 2. The optimal age-dependent marginal tax rate on labor income satisfies

T ′t (yt(θt))

1− T ′t (yt(θt))
=

(
1 +

1

ε

)
1

1
(1+r)t−1 θtft(θt)

× [Mt(θt) + St(θt)] (12)
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where the mechanical effectMt(θt) is defined as:

Mt(θt) =
1

(1 + r)t−1

∫
Θt−1

∫ θ

θt

dFt(θ̃t|θt−1)ht−1(θt−1)dθt−1

− 1

λ(1 + r)t−1

∫
Θt−1

∫ θ

θt

U ′(θt−1, θ̃t)dFt(θ̃t|θt−1)h̃t−1(θt−1)dθt−1. (13)

and

St(θt) = −
∫

Θt−1

∫ θ

θt

µt(θ
t−1, θs)U

′′(θt−1, θs)dθ̃tdθ
t−1

+ (1− τAs )

∫
Θt−1

µt−1(θt−1)

∫ θ

θt

U ′′(θt−1, θt)dFt(θ̃t|θt−1)dθt−1 (14)

where µt(θt) is the Lagrangian multiplier on the Euler equation of individuals with history θt

and λ is the Lagrangian multiplier on the government budget constraint, i.e. the marginal value
of public funds. In Appendix B.1.3, we derive expressions for these multipliers. Further, we
have T ′t (yt(θ)) = 0, and T ′t (yt(θ)) = 0 if θ <∞.

The mechanical effectMt(θt) is similar as in the static model. An important difference is that
it now also captures the insurance motive of taxation. We disentangle the welfare gains from
redistribution and insurance in Section 4.2. St(θt) captures the impact of labor income taxes
on the Euler equation constraints (7). For τs = 0 this additional term is equal to zero because
the value of the Lagrangian multipliers on the Euler equations is equal to zero. Relaxing or
tightening the Euler equations has no first-order effect on welfare because it does not affect
incentives to supply labor. Only for τs 6= 0, relaxing or tightening the Euler equations has a
first-order impact on welfare through the implied change in capital tax revenue.19

Alternatively, one can derive (12) with tax perturbation methods (Golosov, Tsyvinski, and
Werquin 2014).20 In that case, term St(θt) reads as:

St(θt) = τAs

T∑
j=2

(1 + r)j−2

∫
Θj−1

∫ θ

θt

∂aj(θ
j−1)

∂Tt(yt(θ̃t))
dθ̃thj−1(θj−1)dθj−1. (15)

We briefly sketch this perturbation argument. Consider – starting from the optimal tax
system– an infinitesimal increase of the marginal tax rate ∆T ′ at an infinitesimal income in-
terval with length ∆yt(θt) around income level yt(θt). Given that the tax system was optimal,
this should have no first-order effect on welfare. The impact on welfare can be decomposed into
three effects. First, there is a mechanical welfare effect from taking money from all young indi-
viduals with income > yt(θt) is given byMt(θt)×∆T ′∆yt(θt). It depends on the redistributive

19By contrast, the value of the Lagrangian multipliers on the Euler equations are non-zero also for τs = 0
in Section 3.2. In the case of history-dependent labor distortions, relaxing the Euler equations always has a
first-order impact on incentive constraints.

20See also Piketty (1997) and Saez (2001) who study the tax perturbation method in a static environment.
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(b) Welfare Changes From History-Dependent La-
bor Wedges To Age-Dependent Taxation

Figure 2: Welfare Changes From Restricting Labor Wedges

preferences, i.e. the Pareto weights, of the planner, the degree of risk aversion as well as on the
share of individuals with income > yt(θt). The planner trades off this mechanical effect against
a loss in tax revenue which is induced by lower labor supply of individuals of type θt. It can be
shown that this is captured by LS(θt) = −λ T ′t (yt(θ1))

1−T ′t (yt(θt))
θtft(θt)

ε
ε+1
×∆T ′∆yt(θt). Further, a tax

change also changes revenue from the savings tax. This is captured by St(θt) × ∆T ′∆yt(θt).
Note that the summation in the savings term is over the index j, since a tax change in t might
affect savings in every period of the life cycle. We show in Appendix B.2.3 how St(θt) can also
be understood as an income effect on savings triggered by changes in labor taxes. The induced
effects on labor supply and savings behavior have no first-order effect on welfare because of the
envelope theorem. Setting LS(θt) + [Mt(θt) + St(θt)]×∆T ′∆yt(θt) = 0 yields the optimal tax
formula.

Obtaining expressions for ∂aj(θ
j−1)

∂Tt(yt(θ̃t))
in (15) is quite complex in a stochastic environment.

Using (14) provides a way to analytically capture these effects that we also exploit in our
numerical simulations. In Appendix B.2.2, we show the equivalence between (15) and (14) for
a three-period economy. Deriving savings responses for the three-period case is already quite
involved, which shows that using (14) for computational analysis is significantly simpler. For
intuition and interpretation on the other hand, (15) is more suitable. We therefore stick to this
expression in the main text.

In Figure 2, we plot the optimal marginal labor income tax rates. Labor income taxes are
lowest for the young. The other tax schedules for the middle and the old lie closer to each
other. Taxes on the middle-aged are higher than on the old for most of the income support,
but the quantitative difference is smaller. What are the underlying economic intuitions for
these results? The first driving force for the pattern of age-dependent taxes is the way how
hazard-rates of the skill distribution differ among age groups. A well known result in optimal
nonlinear taxation is that the hazard rates of the income and skill distributions are both very
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informative statistics for the optimal pattern of marginal tax rates. The higher the ratio 1−F
fθ

,
the higher are optimal tax rates, ceteris paribus. In the calibration based on age-dependent
income risk processes, these ratios are highest for the middle, lowest for the old, and lie in-
between for the young for most parts of the income support. In addition, in a dynamic and
risky economy, age-dependent taxation has the additional power to provide insurance against
income shocks; we provide a decomposition of the mechanical effect into an insurance and a
redistribution effect in Section 4.2. This insurance motive counteracts the hazard-rate force for
low taxes on the old and explains that taxes on the old are higher than taxes on the young.
Our result that the young should face the lowest taxes is consistent with Weinzierl (2011). He
finds that taxes are highest for the old, whereas in our case they are similar to taxes on the
middle-aged due to offsetting tagging and insurance effects.

The optimal linear tax on the capital stock is now 5.5%, i.e. slightly lower than the optimal
linear capital wedge in restricted optimum in Section 3.2. In Section 4.1, we explain how the
tax rate on the capital stock in each period can be transformed into an annual tax on capital
income.

The next questions we ask is how much aggregate welfare is lost and who bears what share of
that loss resulting from the restriction of labor wedges to only depend on age and current income
and not on the history of incomes? Depending on risk-aversion, the losses range between 0.12%
and 0.43% of consumption. Figure 2(b) illustrates the distributional effects. Interestingly, the
welfare changes are U-shaped in initial skill type. What is the intuition for this heterogeneity
in welfare changes? On the one hand, history dependence allows for more redistribution and on
the other hand it allows for more targeted redistribution. Initially high-ability types gain from
simplicity because of the lower overall level of redistribution. Eliminating history dependence
drastically reduces the possibilities of the planner to engage in tagging and tailor labor wedges
to conditional skill distributions. Initially high skilled people therefore face much higher labor
wedges over the life cycle on average with history dependence than without.

Initially low-ability types also profit from simplicity because redistribution is less targeted;
at least for moderate levels of risk-aversion. A lot of redistribution in the full optimum is
being carried out by differential lump sum payments across different histories. Redistribution
in the full optimum is, hence, very targeted. With only age-dependency, redistribution through
differentiated transfers is by definition not possible and higher lump sum transfers always
strongly benefit the initially-low skilled.
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3.4 Age-Independent Labor Taxation

Next we restrict the ability of the planner to condition labor income taxes on age. Optimal
marginal tax rates follow similar forces as in the age-dependent case. For ease of exposition,
we only state the formula in terms of a tax perturbation:21

T ′(y(θ))

1− T ′(y(θ))
=

(
1 +

1

ε

)
1

θf ∗(θ)
×

[
T∑
t=1

Mt(θ) + SI(θ)

]
, (16)

where

f ∗(θ) =
T∑
t=1

1

(1 + r)t−1

∫
Θt−1

ft(θ|θt−1)ht−1(θt−1)dθt−1, (17)

SI(θ) = τ Is

T∑
j=2

(1 + r)j−2

∫
Θj−1

∫ θ

θ

∂aj(θ
j−1)

∂T (y(θ̃))
dθ̃hj−1(θj−1)dθj−1. (18)

In Section 4, we focus in detail on the general properties and shape of age-independent non-
linear labor taxes. There, we also derive a result for the optimal top tax rate, if the right tail of
the income distribution is Pareto distributed. As before in the case with age-dependent taxes,
it easy to show that at the bottom:

T ′(y(θ)) = 0.

Conceptually, the major difference to age dependence is simply that labor supply incentives,
the mechanical effects and the savings effect are averaged across age groups – as a consequence,
optimal tax rates in Figure 3(a) lie in between the age-dependent rates. The optimal linear
tax rate on the capital stock is 4.7%, hence slightly lower than for optimal age-dependent labor
income taxes.

The aggregate welfare losses from getting rid of age-dependency range from 0.11% to 0.27%.
Remarkably, these losses are very similar as the in the previous simplification. Who wins
and who loses from age independence (as compared to age dependence)? Interestingly, all
individuals except for the lower quintile, lose from the simplification. Moreover, the losses
are increasing in the initial skill level and at the top of the distribution become an order of
magnitude larger than the aggregate Utilitarian losses. What explains this? Age-dependent
taxes are higher for the middle and old aged relative to the young for insurance reasons. In the
age-independent case, taxes are therefore higher for the young than they would be with age-
dependent taxation. This increase in taxes for the young also redistributes from the initially
high skilled to to the initially low skilled, which is why the losses are larger for initially skilled
individuals. In his study on age-dependent taxes, Weinzierl (2011) finds that it is mostly the low
skilled who gain from age-dependent and sophisticated policies. Interestingly, our results here

21For a version of the formula in terms of the Lagrangian multipliers on the Euler equation, see Ap-
pendix B.2.1.
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(b) Welfare Changes From Age Dependence To
Taxation on Current Income

Figure 3: Welfare Changes From Restricting Labor Wedges
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Figure 4: Loss from Linear Taxes Relative To Optimal Nonlinear

differ slightly in this regard. In line with Weinzierl (2011), we find that age dependence delivers
roughly half of the welfare gains from history dependence over age-independent policies.22

Comparison To Linear Taxes. The last question we want to answer is how nonlinear
history-independent labor taxes compare to a simple flat tax system in the dynamic life cycle
model? The aggregate welfare losses are significant and vary between 0.06% and 0.39%. In
Figure 4 we illustrate the distributional consequences of the linearity restriction, compared to
the optimal nolinear policy. Low ability individuals suffer large welfare losses of 4% and more.
This is because the nonlinear scheme entails much more redistribution through the lump sum
element. There is a break point above the 40th percentile, where individuals actually gain from
linearity, as their tax burdens are brought down by the flat tax. Although these individuals
lose some insurance from the linearity, they still benefit on net terms. Finally, there is another
breakpoint and for very high ability types around the 90th percentile, the change in expected

22The most suitable comparison here is log-utility because Weinzierl (2011) quantitatively studies log-utility.
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ρ = 1 ρ = 1.5 ρ = 3

History-Dependent Labor Wedges and Linear Capital Wedges - 0.02% - 0.03% - 0.13%
Age-Dependent Labor Taxes - 0.12% - 0.20% - 0.43%
Age-Independent Labor Taxes - 0.23% - 0.34% - 0.70%
Linear Labor Taxes - 0.29% - 0.48% - 1.09%

Table 1: Utilitarian Welfare Relative to the Full Optimum with Simpler Instruments

lifetime utility decreases with skill level. Very high skilled individuals are better off under
the optimal nonlinear scheme This is because for sufficiently high income levels, the life cycle
tax burden is lower under the linear scheme since optimal nonlinear marginal tax rates are
decreasing, see Figure 3(a).

3.5 Summary of Welfare Losses from Simplicity

Summing up, the main contribution and goal of Section 3 is to understand the role of simplicity
in the form of history independence relative to more complex tax systems. In particular, we
contribute to and complement the NDPF literature. Table 1 summarizes the results. History
dependence in the capital wedge has small welfare consequences, esp. if risk aversion is moderate
– on average (i.e. simply averaged over the three CRRA scenarios) the welfare loss is only 0.06%,
as can be seem from the first line in the table. For labor wedges, the interesting conclusion
from the aggregate welfare analysis is that each "degree of sophistication" for labor taxes
approximately adds the same welfare benefits: Starting from a linear tax system, nonlinear
taxation adds approximately the same welfare improvements as moving from age-independent
to age-dependent taxation and from age dependence to history dependence. The average welfare
losses relative to the full optimum across the three levels of risk aversion we report are 0.25% for
age dependence, 0.42% for age independence and 0.62% for linear taxes. This implies relative
welfare losses of 0.19% from removing history dependence (0.25%-0.06%), 0.17% from removing
age dependence (0.42%-0.25%), and 0.20% from removing nonlinearities in the labor tax code
(0.62%-0.42%). Including higher levels for ρ than 3 in the analysis gives similar patterns of
approximately equal welfare differences. The relative losses from linearity, however, become
more important the larger the level of risk aversion.

Our results are consistent with Farhi and Werning (2013), who also relate linear age-
independent policies to the full optimum. Comparing our results with the caveat in mind
that they use different preferences and a different calibration, they find a welfare loss of 0.30%
using log utility for optimal age-independent linear policies, close to our number of 0.29%. As
our results show, however, the welfare losses are strongly increasing in risk aversion, especially
for linear policies. Restricting their analysis to linear labor wedges, Farhi and Werning (2013)
also find that the welfare losses from age independence are about twice as large as under age
dependence. We find a similar result for nonlinear policies when risk aversion is low (ρ around
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1), however, when risk aversion is larger age-independent taxes gain ground relative to age-
dependent policies. In the broader picture, our analysis contributes to the previous literature
by showing that under age independence, nonlinear income taxes can substantially improve
upon the simple linear schemes. This is potentially important as age dependence may never be
fully realized in real world tax policies.

We also investigate the distributional consequences of simplicity and find that they vary
significantly by scenario. Removing history dependence in labor wedges leads to U-shaped
welfare changes in initial skill type. Initial skill types around the median lose because of
the simplification. Initially high or low skill types may actually gain from this simplification.
Eliminating age dependence leads to welfare losses which are increasing in initial skill type. The
lowest initial skill types gain from this simplification. The reason is that in the age-independent
case, taxes are higher for the young than they would be with age-dependent taxation. This
increase in taxes for the young also redistributes from the initially high skilled to to the initially
low skilled, which is why the losses are larger for initially skilled individuals. Finally, by far
the largest distributional impact comes from restricting labor taxes to be linear. As the linear
schemes offer relatively little redistribution, the low skilled suffer losses which are an order of
magnitude larger than the aggregate losses.

4 A Characterization of Optimal Simple Tax Instruments

In the previous sections we have provided the formal foundations for studying history-in-
dependent tax functions in dynamic stochastic environments and have related it to more com-
plex allocations in terms of welfare.

For policy implications it is of first-order importance to understand the properties of optimal
history-independent taxes. How should governments design history-independent tax schedules?
What is the role of capital taxation if labor income taxes are constrained to condition on
current income only? In this section, we elaborate on these questions in greater detail. In
Section 4.1, we use our approach to study the optimal capital tax rate for some given income
tax function and vice versa. In Section 4.2, we provide a comprehensive decomposition of the
mechanical effect into a redistribution and an insurance component, where the latter provides
a meaningful lower bound on optimal taxes. In Section 4.3, we show how optimal properties
of history independent labor income taxes relate to the properties of the optimal static income
tax function. One important difference between the static and the dynamic perspective is
the mentioned insurance motive for income taxes in dynamic stochastic environments. We
show that this can lead to either large or small differences in optimal static and dynamic tax
schedules, depending on the social welfare function.
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4.1 The Interaction Between Capital and Labor Income Taxes

An advantage of our history-independent tax approach is that it also allows to study optimal
capital taxation given some labor income tax schedule and vice versa. Studying this interaction
between capital and labor income taxation is not possible in the static Mirrlees model. This
interaction is, in general, also not studied in a dynamic Mirrlees approach, since both labor
and capital wedges are part of the dynamic mechanism design solution.

4.1.1 Optimal Capital Taxes for Given Labor Taxes

The formula for the optimal linear capital tax rate is given by:

τs
1− τs

=

∑T
t=2

1
(1+r)t−2

∫
Θt−1 at(θ

t−1)
[
ht−1(θt−1)−

∫
Θ
U ′(θt−1,θ̃t)dFt(θ̃t|θt−1)

λ
h̃t−1(θt−1)

]
dθt−1∑T

t=2
1

(1+r)t−2

∫
Θt−1 at(θt−1)ζat,1−τs(θ

t−1)ht−1(θt−1)dθt−1
,

(19)

where ζat,1−τs(θt−1) is the elasticity of savings elasticity with respect to (one minus) the tax
rate on capital for individuals of history θt−1. Formula (19) is very general because it holds
irrespective of the choice of the labor income tax schedule. We provide a brief intuitive deriva-
tion. Assume that starting from the optimal capital tax rate, the government slightly increases
it. This small change will mechanically increase government’s revenue in present value terms
by

T∑
t=2

1

(1 + r)t−2

∫
Θt−1

at(θ
t−1)ht−1(θt−1)dθt−1. (20)

The tax increase decreases utility of individuals. This impact on the planner’s objective (in
terms of public funds) is given by

T∑
t=2

βt−1(1 + r)

∫
Θt−1

at(θ
t−1)

∫ θ

θ

U ′(θt−1, θ̃)

λ
dFt(θ̃|θt−1)h̃t−1(θt−1)dθt−1. (21)

It also influences the savings decision of individuals, which has no first-order impact on indi-
vidual utility but on public funds, which is given by:

T∑
t=2

τs
(1 + r)t−2

∫
Θt−1

∂at(θ
t−1)

∂τs
h(θt−1)dθt−1

=
T∑
t=2

− 1

(1 + r)t−2

τs
1− τs

∫
Θt−1

ζat,1−τs(θ
t−1)at(θ

t−1)h(θt−1)dθt−1. (22)
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Note that for τs = 0 this effect is of second order indicating that increasing or decreasing τ
from zero has no first-order incentive costs and a non-zero capital tax is desirable whenever
(20)|τ=0 + (21)|τ=0 6= 0. For τ 6= 0, however, it holds that (22) 6= 0. Optimality of τs then
requires (20) + (21) + (22) = 0, which yields (19) (assuming β(1 + r) = 1). Developing a novel
dynamic tax reform approach, Golosov, Tsyvinski, and Werquin (2014) look at the welfare
effects of an increase of a linear capital tax rate starting from any given tax system and obtain
a formula similar to (19). In Appendix B.1.2 we also provide a first-order condition for the
optimal linear capital tax rate in terms of the Lagrangian multiplier functions on the Euler
equations.

Whereas formula (19) applies for optimal and suboptimal labor income taxes, its quantitative
implications are sensitive with respect to the labor income tax schedule. On the one hand, the
more progressive the labor income tax function, the less concentrated is wealth, which lowers
the power of capital taxes for redistribution and insurance as captured by the numerator of (19).
On the other hand, the lower the level of labor income taxation, the less insured individuals
are against labor income risk and the stronger the need for self-insurance through savings. A
strong need for self-insurance implies a lower responsiveness of savings with respect to capital
taxes. Both effects call for higher capital taxation if labor income taxes are lower.

We quantitatively explore this issue and consider the optimal capital tax given (i) the optimal
labor income tax (as in Section 3.4), (ii) an approximation of the current US labor income tax
schedule23, (iii) zero labor income taxes and (iv) a very high progressive labor income tax
code which is as in (ii) but marginal tax rates are increased by 50 percentage points at each
point. In terms of the amount of redistribution carried through the labor tax system, scenario
(iv) features the most progressive schedule, followed by the optimal schedule (i), and then the
current schedule (iii) and finally the zero tax case.

Table 2 summarizes the results. We recalculate τs such that it can be interpreted as an annual
tax rate on capital income, following Farhi, Sleet, Werning, and Yeltekin (2013).24 There are
very large differences across the four scenarios. The optimal tax rate on annual capital income
varies between 3% and 51%. In line with the argumentation from above, the less progressive
the labor income tax schedule the higher the optimal capital tax rate and also the implied
welfare gains from capital taxation.25 Wealth inequality increases if the labor tax code is less

23Here, we use the Gouveia-Strauss specification of Guner, Kaygusuz, and Ventura (2013), who provide
different parametric approximations of the US tax system.

24As Farhi, Sleet, Werning, and Yeltekin (2013), we calculate the tax on annual capital income as a relative
geometric average τCI,annual according to

1− τCI,annual =
((1− τs) ∗ (1 + r))1/T − 1

(1 + r)1/T − 1
,

where T = 13 is the number of years per model period and and r = 1.0313 − 1.
25For brevity, we do not provide comparative statics w.r.t. the CRRA coefficient. A higher CRRA coefficient

increases both, the size and the welfare gain of capital taxation, see also an earlier version of this paper (Findeisen
and Sachs 2014).
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Form of Labor Taxation

Optimal Nonlinear (Mirrlees) Current System Zero Labor Taxes High and Progressive

Optimal Tax Rate on
Annual Capital Income 14.82% 31.28% 51.18% 2.97%

Welfare Gain From
Taxing Capital 0.05% 0.23% 0.83% ≈ 0.00%

Table 2: Optimal Capital Tax Rates For Given Labor Tax Systems (Utilitarian Planner, CRRA
Coefficient of 1.5)

redistributive: going from the case with zero labor taxes to the high tax scenario (iv), the
wealth share held by the top 10% of the wealth distribution in the last period increases from
64% to over 80%.

As argued above, a more progressive labor income tax schedule calls for lower capital income
taxation not only because of lower wealth concentration but also because individuals need to
provide less self-insurance through precautionary savings and should therefore be more elastic
w.r.t. capital taxes in their savings decision. To disentangle these effects, we decompose (19)
to see what part of the variation in optimal capital tax rates across the four scenarios is driven
by the the desire to redistribute wealth, captured by the numerator, and behavioral responses,
captured by the denominator. Going from the zero labor tax case to the high tax scenario
(iv), the numerator decreases by a factor around six and the denominator increases by a factor
around three. Wealth inequality and the strength of behavioral responses, hence, both matter
in explaining the variation in optimal capital tax rates and the decomposition results imply a
larger role for the wealth inequality component.

4.1.2 Optimal Labor Income Taxes for Given Capital Taxes

The optimal labor income tax schedule is still described by (16) – the formula holds for any
level of the capital tax rate τs. The optimal labor income tax schedule is nevertheless influenced
by the degree of capital taxation because the level of the capital tax rate impacts the terms
Mt(θt) and SI(θ). The higher the capital tax rate, the weaker the desire for redistribution
through labor income taxes as captured byMt(θt). The impact on SI(θ) is ambiguous.

Our quantitative exploration reveals that the level of the capital tax rate is relatively unim-
portant for the design of optimal labor income taxes. For example, if we compare the two
extreme cases (i) zero capital taxes and (ii) very high capital taxes of 18% (which was the
highest level in Table 2), the difference in the optimal labor income tax schedule is relatively
small. The schedules differ by at most two percentage points.

This result strongly contrasts with the finding that the optimal capital tax rate is strongly
influenced by the labor income tax schedule. What is driving this asymmetry? The reason is
that capital taxes hardly influence the redistributive power of labor income taxes. In particular,
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the distribution of labor income which is of key importance for optimal marginal tax rates, is
not affected by the level of capital income taxation. The level of the capital tax only influences
the mechanical effects (13) and the savings effect (18). However, these forces are of second
order numerically. By contrast, the redistributive power of capital taxes heavily depends on
inequality in savings, which in turn is strongly affected by the labor income tax code.

4.1.3 A Naive Planner: Using a Static Labor Tax Formula

We now look at a planner who ignores the direct impact of labor taxes on savings tax revenue.
In other words, the planner does not take into account the direct effect of capital tax rates on
labor taxes. The planner in this scenario uses the optimal tax formula (16) with (18) set to
zero. Thus, a government is considered that does not take into account the impact on public
funds through the implied savings responses of individuals. Our simulation reveals that both,
the effects on the optimal tax schedule and on welfare of using this static formula is minuscule.
The welfare loss is only 0.01% in consumption equivalents. This in line with the findings from
Section 4.1.2 that the level of the capital tax does hardly influence optimal labor tax rates.

4.2 Disentangling Redistribution and Insurance Motives

We now show how the role of income taxes in a dynamic environment can be cleanly decomposed
into an insurance and a redistribution component.26 Specifically, we decompose the mechanical
effect as defined in Section 3.3. Recall its definition for an increase of the marginal tax rate at
income level y(θ):

Mt(θ) =

∫
Θt−1

∫ θ

θ

(
λht(θ

t−1)

(1 + r)t−1
− U ′(θt−1, θt)h̃t−1(θt−1)

(1 + r)t−1

)
dFt(θt|θt−1)dθt−1. (23)

M1(θ) measures the redistributive gain from income taxation in period one. Mt(θ) with t > 1

captures both, welfare gains of taxation from redistribution between ex-ante heterogeneous
individuals and insurance against idiosyncratic uncertainty in the t-th period. Whereas the
gains from redistribution depend on the particular set of Pareto weights, gains from insurance
are independent of the welfare criterion – this is formalized in the next proposition:

Proposition 3. The mechanical effect can be decomposed into two parts:

Mt(θ) =MI
t (θ) +MR

t (θ),

26Relatedly, Boadway and Sato (2012) derive a formula for the optimal marginal tax rate in a static setting
with heterogeneity and uncertainty. They also show how their formula addresses the desire to redistribute and
to provide insurance. Their timing is different, however. In their setup, individuals do not perfectly know the
gross income they will earn when making their labor supply decision because gross income will be a function of
labor supply and a stochastic term.
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where
MI

t (θ) =
λ

(1 + r)t−1

∫
Θt−1

[
(1− Ft(θ|θt−1))− CU(θt−1; θ)

]
ht−1(θt−1)dθt−1 (24)

and

MR
t (θ) =

∫
Θt−1

(
λht−1(θt−1)

(1 + r)t−1
−
h̃t−1(θt−1)

∫
θt
U ′(θt−1, θt))dFt(θt|θt−1)

(1 + r)t−1

)
× CU(θt−1; θ)dθt−1

(25)

and

CU(θt−1; θ) =

∫ θ
θ
U ′(θt−1, θt)dFt(θt|θt−1)∫ θ

θ
U ′(θt−1, θt)dFt(θt|θt−1)

.

It can easily be shown that adding (24) and (25) yields (23). Whereas (25) depends on the
set of Pareto weights, (24) is independent of the redistributive preferences. In the following we
use an intuitive perturbation argument to show that MI

t (θ) indeed captures the mechanical
insurance value of taxation andMR

t (θ) captures the mechanical impact of taxation on welfare
through redistribution between ex-ante heterogeneous agents.

For this purpose we slightly reinterpret the classical tax perturbation method. For ease of
exposition, we consider the case without capital taxation.27 Assume that T ′(y(θ)) is increased
in a way that everyone with income above y(θ) now pays one more dollar of labor income taxes.
Then, assume that the additional tax revenue generated by this increase is redistributed in a
lump sum fashion; this lump sum increase has no first-order impact on welfare via the implied
responses of savings behavior.28 The uniform lump-sum tax decrease is given by

∆(θ) =
1− F ∗(θ)∑T
t=1

1
(1+r)t−1

,

where

1− F ∗(θ) = 1− F1(θ) +
T∑
t=2

1

(1 + r)t−1

∫
Θt−1

(1− Ft(θ|θt−1)ht−1(θt−1)dθt−1. (26)

Individuals with θ1 < θ will enjoy higher period one consumption of ∆(θ), whereas period
one consumption for individuals with θ1 ≥ θ will decrease by 1 − ∆(θ). Whether period t

consumption will be increased or decreased depends on the realization of the shock. From a
period t − 1 perspective, the reform of the tax function in period t will provide an insurance

27The presence of a non-zero capital tax τs has not impact on the decomposition in Proposition 3, however,
the perturbation argument is a bit more involved. In Appendix B.3 we show how the perturbation argument
differs in that case.

28The reason is that the change in behavior has no first-order impact on individual utilities by the envelope
theorem and that there is no effect on the government budget because wealth taxes are zero. An equivalent
option would be to redistribute the lump sum in the first period. But also in the presence of a savings tax
a slightly related tax reform can be constructed to obtain the decomposition of the mechanical effect. See
Appendix B.3.

26



value. To obtain an expression for this insurance value, define for each type θt−1 a ‘constant
utility term’:

CU(θt−1; θ) =

∫ θ
θ
U ′(θt−1, θt)dFt(θt|θt−1)∫ θ

θ
U ′(θt−1, θt)dFt(θt|θt−1)

.

The numerator captures the (expected) utility loss in period t due to the tax increase (absent
the lump-sum tax adjustment). Dividing it by the expected marginal utility in period t says
by how much consumption had to be increased in period t, for every possible realization of the
t-period shock, in order to make the individual of type θt−1 in expectation equally well of. This
number is smaller than one because (i) the tax increase in period t affects the individual in
period t with probability less than one and because of (ii) risk aversion.

To measure the welfare gain through this insurance role of income taxation, we ask the
following question: If the government could increase the lump-sum transfer in period t by a
different amount for each θt−1-type such that expected period t utilities are unchanged for all
θt−1-types (i.e. by CU(θt−1; θ) respectively), how much resources could the government save
due to this insurance against income risk? From each individual of type θt−1, the government
obtains tax revenue of 1−Ft(θ|θt−1)

(1+r)t−1 in present value terms. To hold utility constant for that

individual from a period t − 1 perspective, only CU(θt−1;θ)
(1+r)t−1 of resources have to be spent (in

present value terms). Adding up and integrating over all histories yields (24). MI
t (θ) reflects

the gains from insurance for individuals in period t − 1 against their period t shocks. This
insurance gain is measured in first period resources. The more pronounced labor income risk,
conditional on θt−1, and the stronger risk aversion, the larger is this insurance effect. It is
simple to show that it is always positive.

Given that the lump-sum transfer in period t is not increased by CU(θt−1; θ) for type θt−1

but by ∆(θ) instead, expected period t utility will not stay constant. Instead expected utility
will be increased by

R(θt−1; θ) = ∆(θ)− CU(θt−1; θ)

in monetary terms for individuals of type θt−1. R(θt−1; θ) captures the redistributive element
of this tax reform for period t. The government necessarily redistributes between different θt−1-
types also in period t. We now derive the welfare consequences of this implied redistribution.
Recall that R(θt−1; θ) measures the (possibly negative) expected utility increase of type θt−1 in
monetary terms. A marginal increase in consumption in period t for individuals of type θt−1

(and for each realization of the shock θt) is valued

βt−1

∫
Θ

U ′(θt−1, θt)dFt(θt|θt−1)h̃t−1(θt−1)− λ

(1 + r)t−1
ht−1(θt−1)
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Figure 5: Insurance and Redistribution Part of Optimal Taxes

by the planner. Thus, aggregating over all types and weighing by R(θt−1; θ) yields:

MR∗
t (θ) =

∫
Θt−1

(
λht−1(θt−1)

(1 + r)t−1
−
h̃t−1(θt−1)

∫
θt
U ′(θt−1, θt)dFt(θt|θt−1)

(1 + r)t−1

)
×
(
CU(θt−1; θ)−∆(θ)

)
dθt−1. (27)

The last term ∆(θ) can now be ignored because it is independent of θt−1 and because it is
possible to show that

∫
Θt−1

(
λht−1(θt−1)

(1 + r)t−1
−
h̃t−1(θt−1)

∫
θt
U ′(θt−1, θt)dFt(θt|θt−1)

(1 + r)t−1

)
dθt−1 = 0.

This follows from the expression for λ which says that average period one social marginal utility
is equal to λ (see (41) in Appendix B.1.3) and the Euler equations. Combining this with (27)
yieldsMR

t (θ) as defined in (25).
These arguments reveal that (25) indeed measures the welfare effect through redistribution

between ex-ante heterogeneous agents. The CU(θt−1; θ)-term should be higher for high θt−1-
types because they are likely to draw a better shock in Period t. For redistributive Pareto-
weights (i.e. F (θ1) ≤ F̃ (θ1) for each θ1) the termMR

t (θ) should therefore be positive at every
θ. If Pareto weights are sufficiently strong in favor of high innate types, the welfare effect from
redistribution can certainly be negative.

Quantitative Illustration of Decomposition. Figure 4.2 illustrates the insurance and
redistribution components of the mechanical effect at the Utilitarian optimum as discussed in
Section 3.4. We plot each component added up over all periods:

∑3
t=1Mt(θ),

∑3
t=1MI

t (θ)

and
∑3

t=1MR
t (θ). By definition, MI

1(θ) = 0, as in the first period taxes purely redistribute
but do not provide any insurance value. All three functions are hump-shaped. Moreover,
the insurance and redistribution co-move closely across the income distribution. Interestingly,

28



the insurance component is slightly bigger than the redistribution component for most of the
income distribution. In the next section, we shed light on how the shape of the mechanical
effect influences the shape of optimal tax rates.

4.3 Relation To The Seminal Results of The Static Optimal Tax Prob-

lem

We next turn to the question how optimal history-independent taxes compare to the policy
prescriptions of the static model. Diamond (1998) investigates the main drivers of the shape
of optimal tax rates in the static model. We start by comparing the dynamic case to the static
one in the spirit of the Diamond paper. Next, we reinvestigate results for the optimal tax rate
under the limit assumption that the right tail of the income distribution is Pareto distributed.

4.3.1 The Shape of Marginal Tax Rates: Dynamic versus Static

For a static environment, Diamond (1998) investigates conditions, which help to understand
the shape of optimal taxes. In this section, we study the shape of optimal history-independent
tax rates in dynamic environments and compare them to the static model. Recall that age-
independent Pareto optimal marginal labor income tax rates are given by:

T ′(y(θ))

1− T ′(y(θ))
=

(
1 +

1

ε

)
1

θf ∗(θ)
×

[
T∑
t=1

Mt(θ) + SI(θ)

]
,

where f ∗(θ),Mt(θ) and SI(θ) are defined by (17), (13) and (18). Inspired by Diamond (1998),
we decompose our formula into three parts:

T ′(y(θ))

1− T ′(y(θ))
= A(y(θ)) · B(y(θ)) · C(y(θ))

where

A(y(θ)) =

(
1 +

1

ε

)
, B(y(θ)) =

∑T
i=1Mi(θ) + SI(θ)

1− F ∗(θ)
, C(y(θ)) =

1− F ∗(θ)
θf ∗(θ)

.

with F ∗(θ) as defined in (26). How does each term contribute to the optimal shape of taxes?
A standard assumption in the literature is to work with a constant elasticity so that A is a
constant. The term C is similar as in the static model and captures the share of individuals
earning more than y(θ) over the share of individuals earning y(θ) multiplied by their produc-
tivity θ. For the static case, the cross sectional skill distribution is relevant. Here, in a dynamic
lifecycle perspective, it is the ratio of the adjusted lifecycle distribution F ∗(θ) that matters.
The role of F ∗(θ) for optimal history-independent taxes is therefore equivalent to the role of
the cross-sectional skill distribution for optimal taxes in a static problem.
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Term B differs compared to the static approach for two reasons. First, it is extended by
the savings effect SI(θ) that is not present in the static formula. Second, the mechanical effect∑T

i=1Mi(θ) does not reflect the welfare effect of taxation through redistribution between ex-
ante different agents only but also social insurance against wage risk – see Section 4.2. For ease
of exposition, we define B1(θ) =

∑T
i=1Mi(θ)

1−F ∗(θ) and B2(θ) = SI(θ)
1−F ∗(θ) .

We start by explaining the role of B2(θ), which measures the effect of the marginal labor
income tax rate on savings tax revenue. Remember from (18) that this depends crucially on
how labor tax rates at a given point change savings behavior. To fix ideas consider the following
scenario: suppose there are only two periods and tax rates at income level y are increased –
this triggers two different kinds of income effects on savings by all agents with income above
y today. First, disposable income today is reduced, which reduces savings. Second, the tax
increases savings because the expected tax burden in the future period is increased. The
sign of B2(θ) depends on the relative strength of these effects. For our quantitative model –
calibrated to match a realistic life cycle structure – we find that B2(θ) is positive up to incomes
of about $25,000, so that up to that income level the second effect dominates. Moreover, B2(θ)

is monotonically decreasing. Taking together the new term B2(θ) is a force for higher marginal
tax rates for low incomes, lower marginal tax rates for higher incomes and therefore contributes
to decreasing marginal tax rates over the schedule. Quantitatively however, B2(θ) is extremely
small in absolute value. When we relate it to B1(θ), the term B2(θ) is almost two orders of
magnitudes smaller on average. This is consistent with the results form Section 4.1.3, where
we found only minuscule differences in the optimal allocation if the savings effects, captured by
B2(θ), are ignored. Whereas the savings term B2(θ) does hardly influence the shape of optimal
tax rates, we now illustrate how B1(θ) can be very different in the static and the dynamic
context. This crucially depends on the social welfare function and the taste for redistribution
across different ability groups.

The Role of the Social Welfare Function. To discuss the role of the social welfare func-
tion, we start with a case where we choose Pareto weights f̃1(θ1) such that in a static world
with cross sectional cdf F1(θ) optimal marginal tax rates would be zero and everybody would
consume her income. We refer to this social welfare function as ‘laissez-faire’ Pareto weights.
Figure 6(a) shows that optimal marginal tax rates in the dynamic context differ dramatically
from the zero tax rates in the static case. This is entirely driven by the insurance value of
taxation in a dynamic setting. Tax rates start at about 25% then fall and finally converge to
a level around 10%.

In Figure 6(b), we explore what contributes to this U-shape. First, note that in the dynamic
model the C component is convexly decreasing. It becomes clear that the U-shape in the
dynamic case comes from the interaction of C and B. The shape of B actually contributes to
increasing marginal tax rates, but this is offset for low incomes by the decrease in C.
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Figure 6: ‘Laissez-Faire’ Pareto Weights
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Figure 7: Utilitarian Pareto Weights

By contrast, for Pareto weights which lead to significant redistribution already in the static
model, the shape of tax rates in the dynamic and static case become much more similar. We
illustrate this for a Utilitarian social welfare function in Figures 7(a) and 7(b). The differences
in optimal tax policies is much smaller. This is intuitive: as is well-known, a Utilitarian social
welfare function in the static context can be interpreted as expected utility maximization before
the ability type is revealed (behind a veil of ignorance). This implies that the static and the
dynamic planner both share a similar desire for redistribution: the B-terms are both concave
and increasing.29 Taxes are slightly higher in the dynamic case for higher income levels which
is mainly driven by differences in the static and dynamic C-term.

29The B term in the static case is slightly larger here, because marginal utility of the very low skilled is
slightly higher in the static case compared to the dynamic case. This is driven by the fact that wages grow
from the first to the second period so that individuals can smooth consumption and because shocks are not
perfectly persistent, implying that some people are only low skilled for a limited amount of time, allowing them
to self-insure.
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Summing up, the shape and level of labor income tax rates can be very different taking
either a dynamic or a static perspective. The difference is more pronounced when the social
welfare function does not imply a lot of redistribution from a static perspective. Intuitively, in
the dynamic model even without a taste for redistribution, there remains the insurance motive
of taxation. The differences vanish, when the social welfare function already implies a lot of
redistribution from a static perspective. In this section, we illustrated this insight by exploring
‘laissez-faire’ Pareto weights and the Utilitarian case. The intuition is more general, however –
in unreported results, we have also compared other other points on the Pareto frontier, finding
the same patterns.

4.3.2 The Top Tax Rate

We now provide a limit result for the optimal labor tax rate at the top of the income distribution.
With our stochastic multi-period environment, this forms the counterpart to the famous Saez
(2001) formula for the static model. We follow Saez and express the optimal tax formula in
terms of income instead of skill distributions; formally, let et|t−1(yt|yt−1) denote the conditional
distribution in period t. The standard formula assumes, in line with the data, that the right
tail of the cross-sectional income distribution is Pareto distributed. In the dynamic model
more assumptions are needed. One needs an assumption for the right tail for every conditional
distribution et|t−1(yt|yt−1) in every time period t and for any previous income level yt−1. Given
assumptions on the value of the Pareto parameter for each conditional distribution, it would
then be possible to derive a top tax rate formula, depending on all Pareto parameters across
the conditional distributions.

In what follows, instead of placing assumptions on every single conditional distribution
et|t−1(yt|yt−1), we consider a scenario where Pareto parameters differ by age groups only. We
do this for two reasons. First, there is no empirical guidance on how Pareto parameters differ
across different conditional distributions, however, some recent papers have show how these
parameters differ by age groups. Second, it simplifies the exposition while delivering the same
intuition. Formally, we assume that at every age above a high-income threshold yH , earnings
are Pareto distributed with an age-dependent parameter at. We obtain the following top tax
result for the dynamic economy:

Proposition 4. Assume that welfare weights for top incomes in both periods converge to a
constant W across age groups and elasticities at the top converge to a constant ε. Then the
optimal top marginal tax rate above income level yH satisfies:

T ′

1− T ′
=

(
1−W

)∑T
t=1

1
(1+r)t−1

1
at−1

+ S

ε ·
∑T

t=1
1

(1+r)t−1
at
at−1

, (28)

32



where S = τ Is
∑T

t=2
1

(1+r)t−2

∫
Θj−1

∫ θ
θH

∂aj(θ
j−1)

∂T (y(θ̃))
dθ̃hj−1(θj−1)dθj−1/yH captures the fiscal externality

on capital taxes, normalized by the Pareto threshold, and, as stated above the welfare weights
converge:

∫
Θt−1

∫ θ
θH
βt−1U ′(θj−1, θ̃)h̃t−1(θt−1)ft(θ̃|θt−1)dθ̃dθj−1 =W.

Proof. Mechanical effects by a small reform of τ are given byM =
∑T

t=1(ymt −yH) 1
(1+r)t−1

(
1−W

)
,

where ymt is average income above the threshold. Labor supply effects are LS = − T ′
1−T ′ ε

∑T
t=1 y

m
t

1
(1+r)t−1 .

Using LS +M + SyH = 0 and at
at−1

= yH

ymt
gives the result.

The optimal top tax rate is decreasing in the Pareto parameters at. As in the static model, a
higher a reflects a thinner tail and less inequality driven by the top. Moreover, we see a savings
term S as for the general tax formula discussed in the last section: also the top labor income
tax rate may affect savings behavior, causing a fiscal externality. Relaxing the assumption of
separate Pareto parameters, i.e. assuming at = a, it is then easy to show that:

T ′

1− T ′
=

1−W + (a−1)

(1+ 1
1+r )
× S

ε · a
.

This formula is the famous top tax prescription from Saez, except for the presence of the savings
term S weighted by (a−1)

(1+ 1
1+r )

– the formula collapses to the static one if S = 0. Numerically

in line with the results of the previous section, we always have found a very small role of S,
hardly influencing optimal top rates.

Moreover, simple numerical exercises on formula (28) reveal that with heterogeneous Pareto
tails across different distributions, the relatively thicker tails dominate optimal tax rates. Sup-
pose, for example, we take two age groups and that the Pareto parameter of the young a1 is
around 3.5 and that of the old a2 is 1.75 – this corresponds to the numbers found for the US
for the age groups around 25 years (the young) and 50 years (the old) based on administrative
data (Badel and Huggett 2014). Using formula (28), setting r = S = W = 0 for simplicity
and an elasticity parameter of 0.3, would yield an optimal top tax around 61%. In comparison
the optimal tax rate would be around 65.5% if both tails were thick (a1 = a2 = 1.75) but only
48.8% if both tail were thin (a1 = a2 = 3.5). In this sense, the optimal tax formula allowing
for heterogenous Pareto coefficients, strongly overweighs those distributions with a thicker tail.
This result is robust when we consider more than just two age groups.

5 Conclusion

This paper analyzes Pareto optimal nonlinear taxation of annual labor income as well as linear
taxation of capital in a framework with heterogenous agents whose skills evolve stochastically
over time. By focusing on preferences without income effects on labor supply, we developed a
first-order approach to make this problem tractable for a continuous type space. The paper
can be seen as providing a link between the static optimal taxation literature and dynamic
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public finance models: whereas we explicitly take into account dynamics and idiosyncratic un-
certainty, we optimize over simple tax functions instead of looking at optimal history-dependent
distortions.

We have provided a detailed welfare accounting in order to quantify the welfare losses from
the different modifications as compared to the constrained optimal allocations. We found that
the following restrictions on labor distortions yield welfare losses of similar size: from history
dependence to age dependence, from age dependence to age independence and finally from age
independence to linear (and age-independent) labor income taxes.

We also characterized properties of optimal simple tax schedules, both theoretically and
quantitatively. The most important difference to the static perspective on optimal income
taxation is the additional insurance motive of taxation which provides a meaningful lower
bound on taxation. Further, we have quantitatively shown that capital taxation is desirable
and the level of the optimal capital tax rate is decreasing the degree of progressivity of the
labor income tax schedule.

It is likely that our method to study simple history-independent tax instruments in dynamic
environments can also be applied more broadly in other contexts.30 For example, we have left
out an explicit role for retirement savings and different sources of capital income, potentially
with stochastic returns. Shourideh (2013) investigates such a model with risk-return trade-offs
for different kinds of capital. We have focused on labor supply incentives along the inten-
sive margin and have neglected labor market participation decisions. Jacquet, Lehmann, and
Van der Linden (2013) provide a state of the art treatment of a static Mirrlees model with labor
market participation decisions in addition to intensive labor supply decisions. Incorporating
such realistic features into the life cycle framework with labor income risk and taxation seems
to be a fruitful and promising avenue for future research.

Finally, in future research one would like to combine the analysis of history-dependent and
history-independent instruments. For example, by restricting certain parts of the redistribution
& insurance system to be history independent or by restricting the degree of complexity of
history dependence.

30In Findeisen and Sachs (2013), we use this approach to study optimal education-independent income taxes.
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A Derivation of History-Dependent Formulas

A.1 Full Optimum
For the history-dependent problem, define vt(θt) = U

(
ct(θ

t)−Ψ
(
yt(θ

t)
θt

))
and Γ(vt) = ct − Ψ

(
yt
θt

)
. Define

Vt(θ
t) = U(ct(θ

t) − Ψ
(
yt(θ

t)
θt

)
+
∑T
i=t+1 β

i−1
∫

Θi(θt)

(
U(ci(θ

i)−Ψ
(
yi(θ

i)
θi

))
hi(θ

i)dθi, where Θi(θt) is the set
of histories at i that contains θt.

To handle (1), we apply a first-order approach (Golosov, Troshkin, and Tsyvinski 2013, Farhi and Werning
2013), which yields the following envelope conditions:

∂V (θt−1, θt)

∂θt
= U ′tΨ

′ yt(θ
t)

θ2
t

+ β

∫
Θt+1

Vt+1

(
θt−1, θt, θt+1

) ∂ft+1(θt+1)

∂θt
dθt+1.

We assume that the second order conditions are fulfilled in the following. For a discussion of sufficient-conditions
for the first-order approach to be valid, see Golosov, Troshkin, and Tsyvinski (2013). Setting up a Lagrangian
and applying integration by parts yields

max
vt(θt),yt(θt)

L =

T∑
t=1

βt−1

∫
Θt
vt(θ

t)dh̃(θt)dθt −
T∑
t=1

∫
Θt
η′t(θ

t)Vt(θ
t)dθt −

T∑
t=1

∫
Θt
ηt(θ

t)U ′tΨ
′ yt(θ

t)

θ2
t

dθt

−
T∑
t=1

∫
Θt
ηt(θ

t)β

∫
Θt+1

Vt+1

(
θt, θt+1

) ∂ft+1(θt+1)

∂θt
dθt+1

+ λ

T∑
t=1

1

Rt−1

∫
Θt

(
yt(θ

t)− Γ(vt(θ
t)) + Ψ

(
yt(θ

t)

θt

))
h(θt)dθt,

where ηt(θt) is the Lagrangian multiplier for the envelope condition for history θt. The first-order condition for
vt(θ

t) reads as

βt−1h̃(θt)− λ 1

Rt−1

1

U ′t(θ
t)
h(θt)−

t∑
j=1

η′j(θ
j)βt−j

t∏
i=j+1

fi(θi|θi−1)

− ηt(θt)γt(θt)
1

θt
−

t−1∑
j=1

ηj(θ
j)βt−j

∂fj+1

∂θj

t∏
i=j+2

fi(θi|θi−1) = 0. (29)

Applying this first-order condition also for period t − 1, solving for η′t−1(θt−1), inserting into (29) and using
βR = 1 yields

λ
1

Rt−1
h(θt)

(
1

U ′t−1

− 1

U ′t

)
− η′t − ηt−1β

∂ft
∂θt−1

− ηtγt
1

θt
+ βftηt−1γt−1

1

θt−1
= 0 (30)

Solving this differential equation, we obtain:

ηt(θt) =

∫ θ

θt

exp

(∫ x

θ

γ(s)
1

s
ds

){
λ

1

Rt−1
h(θt−1, x)

(
1

U ′t(θ
t−1, x)

− 1

U ′t−1(θt−1)

)

+ βηt−1
∂ft(x|θt−1)

∂θt−1
− βft(x|θt−1)ηt−1γt−1

1

θt−1

}
dx.
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Next, it is easy to show that the first-order condition for yt(θt) yields

τLt(θ
t)

1− τLt(θt)
=

(
1 +

1

ε

)
U ′(θt)ηt(θ

t)

λ
(

1
R

)t−1
θth(θt)

. (31)

We obtain

τLt(θ
t)

1− τLt(θt)
=

(
1 +

1

ε

)
1

λ
(

1
R

)t−1
θth(θt)

∫ θ

θt

exp

(∫ x

θ

γ(s)
1

s
ds

)

U ′(θt)

{
λ

1

Rt−1
h(θt−1, x)

(
1

U ′t(θ
t−1, x)

− 1

U ′t−1(θt−1)

)

+ βηt−1
∂ft(x|θt−1)

∂θt−1
− βft(x|θt−1)ηt−1γt−1

1

θt−1

}
dx. (32)

Using (31) for period t− 1, solving for ηt−1(θt−1) and inserting yields:

τLt(θ
t)

1− τLt(θt)
=

(
1 +

1

ε

)
1

θtft(θt|θt−1)

∫ θ

θt

exp

(∫ x

θ

γ(s)
1

s
ds

)
U ′(θt)

{
ft(x|θt−1)

(
1

U ′t(θ
t−1, x)

− 1

U ′t−1(θt−1)

)

+
τLt−1

1− τLt−1

(
1 +

1

ε

)−1

θt−1
1

U ′t−1

∂ft(x|θt−1)

∂θt−1

− τLt−1

1− τLt−1

(
1 +

1

ε

)−1

θt−1
1

U ′t−1

ft(x|θt−1)γt−1
1

θt−1

}
dx (33)

after some slight simplifications.

A.1.1 Relation to the Previous Literature

In this appendix we show how to transform our formula into that of Golosov, Troshkin, and Tsyvinski (2013).
For this purpose, define λt(θt) (equivalent to λ1,t):

λt(θ
t) =

τLt(θ
t)

1− τLt(θt)
1

U ′(θt)

(
1 +

1

ε

)−1

ft(θt|θt−1)θtγt(θ
t)

1

θt
+
ft(θt|θt−1)

U ′ (θt)
.

Using this definition, we can rewrite (33) as:

τLt(θ
t)

1− τLt(θt)
=

(
1 +

1

ε

)
1

θtft(θt|θt−1)

∫ θ

θt

exp

(∫ x

θ

γ(s)
1

s
ds

)
U ′(θt)ft(x|θt−1)

(
1

U ′t(θ
t−1, x)

− λt−1(θt−1)

)
+

τLt−1

1− τLt−1

(
1 +

1

ε

)−1
θt−1

θt

1

ft(θt|θt−1)

1

U ′t−1(θt−1)

∫ θ

θt

exp

(∫ x

θ

γ(s)
1

s
ds

)
∂ft(x|θt−1)

∂θt−1
dx

which is the expression of Golosov, Troshkin, and Tsyvinski (2013) for GHH preferences at the beginning of their
Appendix A4. To obtain an expression for λt(θt), one has to use the transversality condition, i.e. ηt(θt−1, θ) = 0

and solve for λt(θt).
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A.2 Linear Capital Wedges
The problem is only slightly altered as compared to Appendix A.1 in that (2) has to be considered as well. The
Lagrangian now reads as:

max
vt(θt),yt(θt),τs

L =

T∑
t=1

βt−1

∫
Θt
vt(θ

t)dh̃(θt)dθt −
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θ2
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+

T−1∑
t=1

∫
Θt
µt(θ

t)

(
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∫
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)
.

The FOC for vt(θt) now reads as

βt−1h̃(θt)− λ 1

Rt−1

1

U ′t(θ
t)
h(θt)−

t∑
j=1

η′j(θ
j)βt−j

t∏
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1
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ft. = 0 (34)

Applying this first-order condition also for period t − 1, solving for η′t−1(θt−1), inserting into (34) and using
βR = 1 yields

0 = λ
1

Rt−1
h(θt)

(
1

U ′t−1

− 1

U ′t

)
− η′t − ηt−1β

∂ft
∂θt−1

− ηtγt
1

θt
+ βftηt−1γt−1

1

θt−1

− µt(θt)
U ′′t
U ′t

+ µt−1(θt−1)(1− τs)
U ′′t
U ′t

ft − βft
(
−µt−1(θt−1)

U ′′t−1

U ′t−1

+ µt−2(θt−2)(1− τs)
U ′′t−1

U ′t−1

ft−1

)
. (35)

Solving the differential equation, we obtain:

ηt(θt) =

∫ θ

θt

exp

(∫ x

θ

γ(s)
1

s
ds

){
λ

1

Rt−1
h(θt−1, x)

(
1

U ′t(θ
t−1, x)

− 1

U ′t−1(θt−1)

)
+ βηt−1

∂ft(x|θt−1)

∂θt−1
− βft(x|θt−1)ηt−1γt−1

1

θt−1
+ µt(θ

t−1, x)
U ′′t
U ′t
− µt−1(θt−1)β(1 + r)(1− τ)

U ′′t
U ′t

ft

+ βft

(
−µt−1(θt−1)

U ′′t−1

U ′t−1

+ µt−2(θt−2)β(1 + r)(1− τ)
U ′′t−1

U ′t−1

ft−1

)}
dx

It is easy to show that (31) also holds in this case. Further using the same algebraic manipulations as from (32)
to (33) yields:
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τLt(θ
t)

1− τLt(θt)
=

(
1 +

1

ε

)
1

λ
(

1
R

)t−1
θth(θt)

∫ θ

θt

exp

(∫ x

θ

γ(s)
1

s
ds

)

U ′(θt)

{
λ

1

Rt−1
h(θt−1, x)

(
1

U ′t(θ
t−1, x)

− 1

U ′t−1(θt−1)

)

+
τt−1

1− τt−1

(
1 +

1

ε

)−1

λβt−1θt−1
ht−1(θt−1)

U ′t−1

∂ft(x|θt−1)

∂θt−1

− τt−1

1− τt−1

(
1 +

1

ε

)−1

λβt−1θt−1
ht−1(θt−1)

U ′t−1

ft(x|θt−1)γt−1
1

θt−1

+ µt(θ
t−1, x)

U ′′t
U ′t
− µt−1(θt−1)(1− τs)

U ′′t
U ′t

ft

+ βft

(
−µt−1(θt−1)

U ′′t−1

U ′t−1

+ µt−2(θt−2)(1− τs)
U ′′t−1

U ′t−1

ft−1

)}
dx.

B History-Independent Taxes

B.1 Lagrangian, First-Order Conditions and Multipliers

B.1.1 The Lagrangian

Here, we state Lagrangian for the problem as stated in Proposition 1. The age-independent counterpart is
basically equivalent; the subscript t would have to dropped for yt,Mt and ηt.

L =

T∑
t=1

βt−1

∫
Θt
U

(
Mt(θt)− at+1(θt)

+ (1− τs)(1 + r)at(θ
t−1)−Ψ

(
yt(θt)

θt

))
h̃t(θ

t)dθt

+ λ
T∑
t=1

1

(1 + r)t−1

∫
Θt−1

∫
Θ

yt(θt)−M(θt) + τs(1 + r)at(θ
t−1)dFt(θt|θt−1)ht−1(θt−1)dθt−1

+

T−1∑
t=1

∫
Θt
µt(θ

t)

[
U ′
(
Mt(θt)− at+1(θt) + (1− τs)(1 + r)at(θ

t−1)−Ψ

(
yt(θt)

θt

))

− β(1 + r)(1− τs)
∫

Θ

U ′

(
Mt+1(θt+1)− at+2(θt, θt+1)

+ (1− τs)(1 + r)at+1(θt)−Ψ

(
yt+1(θt+1)

θt+1

))
dFt(θt+1|θt)

]
dθt

+

T∑
t=1

∫
Θ

ηt(θt)
∂
(
Mt(θt)−Ψ

(
yt(θt)
θt

))
∂θt

dθt −
T∑
t=1

∫
Θ

ηt(θt)Ψ
′
(
yt(θt)

θt

)
yt(θt)

θ2
t

dθt.

Partially integrating
∫

Θ
ηt(θt)

∂
(
Mt(θt)−Ψ

(
yt(θt)
θt

))
∂θt

dθt yields

ηt(θ)

(
Mt(θ)−Ψ

(
yt(θ)

θ

))
− ηt(θ)

(
Mt(θ)−Ψ

(
yt(θ)

θ

))
−
∫

Θ

η′t(θt)

(
Mt(θt)−Ψ

(
yt(θt)

θt

))
dθt,

which can then be replaced yielding
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L =

T∑
t=1

βt−1

∫
Θt
U

(
Mt(θt)− at+1(θt)

+ (1− τ)(1 + r)at(θ
t−1)−Ψ

(
yt(θt)

θt

))
h̃t(θ

t)dθt

+ λ

T∑
t=1

1

(1 + r)t−1

∫
Θt−1

∫
Θ

yt(θt)−M(θt) + τ(1 + r)at(θ
t−1)dFt(θt|θt−1)ht−1(θt−1)dθt−1

+

T−1∑
t=1

∫
Θt
µt(θ

t)

[
U ′
(
Mt(θt)− at+1(θt) + (1− τ)(1 + r)at(θ

t−1)−Ψ

(
yt(θt)

θt

))

− β(1 + r)(1− τt+1)

∫
Θ

U ′

(
Mt+1(θt+1)− at+2(θt, θt+1)

+ (1− τt+1)(1 + r)at+1(θt)−Ψ

(
yt+1(θt+1)

θt+1

))
dFt(θt+1|θt)

]
dθt

−
T∑
t=1

∫
Θ

η′t(θt)

(
Mt(θt)−Ψ

(
yt(θt)

θt

))
dθt −

T∑
t=1

∫
Θ

ηt(θt)Ψ
′
(
yt(θt)

θt

)
yt(θt)

θ2
t

dθt.

+

T∑
t=1

ηt(θ)

(
Mt(θ)−Ψ

(
yt(θ)

θ

))
− ηt(θ)

(
Mt(θ)−Ψ

(
yt(θ)

θ

))
.

B.1.2 First-Order Conditions

The derivatives with respect to the endpoint conditions yield ∀t : ηt(θ) = ηt(θ) = 0 (equivalently, η(θ) = η(θ) =

0 for the age-independent case). The first-order conditions read as

∂L
∂Ms(θs)

=− λ

(1 + r)s−1

∫
Θs−1

fs(θs|θs−1)hs−1(θs−1)dθs−1

+ βs−1

∫
Θs−1

U ′(θs−1, θs)fs(θs|θs−1)h̃s−1(θs−1)dθs−1

+

∫
Θs−1

µs(θ
s−1, θs)U

′′(θs−1, θs)dθ
s−1

− (1− τ)

∫
Θs−1

µs−1(θs−1)U ′′(θs−1, θs)fs(θs|θs−1)dθs−1

− η′s(θs) = 0. (36)

For the age-independent case, one basically would have the summation over t = 1 to T for the first two lines,
the summation over t = 1 to T − 1 for the third line, the summation over t = 2 to T for the fourth line (apart
form dropping subscripts for yt,Mt, η

′
t, ηt). The same argument applies for the first-order condition for gross

income
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∂L
∂ys(θs)

=
λ

(1 + r)s−1

∫
Θs−1

fs(θs|θs−1)hs−1(θs−1)dθs−1

− βs−1

∫
Θs−1

U ′(θs−1, θs)Ψ
′
(
ys(θs)

θs

)
1

θs
fs(θs|θs−1)h̃s−1(θs−1)dθs−1

+

∫
Θs−1

µs(θ
s−1, θs)U

′′(θs−1, θs)Ψ
′
(
ys(θs)

θs

)
1

θs
dθs−1

− β(1 + r)(1− τ)

∫
Θs−1

µs−1(θs−1)U ′′(θs−1, θs)Ψ
′
(
ys(θs)

θs

)
1

θs
fs(θs|θs−1)dθs−1

− η′s(θs)Ψ′
(
ys(θs)

θs

)
1

θs
− ηs(θs)

(
Ψ′
(
ys(θs)

θs

)
1

θ2
s

+ Ψ′′
(
ys(θs)

θs

)
ys(θs)

θ2
s

)
= 0. (37)

The following first-order conditions are equivalent in both cases (apart form dropping subscripts for yt,Mt, η
′
t, ηt):

∂L
∂as+1(θs)

=
λ

(1 + r)s−1
τhs(θ

s)− µs(θs)U ′′ (θs)

− (1− τ)2β(1 + r)2µs(θ
s)

∫
Θ

U ′′(θs, θs+1)dFs+1(θs+1|θs)

+ (1− τ)β(1 + r)µs−1(θs−1)U ′′ (θs) fs(θs|θs−1)

+ (1− τ)(1 + r)

∫
Θ

µs+1(θs, θs+1)U ′′(θs, θs+1)dθs+1 = 0. (38)

∂L
∂τ

=

T∑
t=2

λ

(1 + r)t−2

∫
Θt−1

at(θ
t−1)ht−1(θt−1)dθt−1

−
T∑
t=2

βt−1(1 + r)

∫
Θt−1

at(θ
t−1)

∫
Θ

U ′(θt−1, θt)dFt(θt|θt−1)h̃t−1(θt−1)dθt−1

−
T−1∑
t=1

(1 + r)

∫
Θt−1

at(θ
t−1)

∫
Θ

µt(θ
t−1, θt)U

′′(θt−1, θt)dθtdθ
t−1

+

T∑
t=2

β(1 + r)2(1− τs)
∫

Θt−1

µt−1(θt−1)

∫
Θ

U ′′(θt−1, θt)at(θ
t−1)dFt(θt|θt−1)dθt−1

+

T∑
t=2

β(1 + r)

∫
Θt−1

µt−1(θt−1)

∫
Θ

U ′(θt−1, θt)dFt(θt|θt−1)dθt−1 = 0. (39)

B.1.3 Multiplier Functions

First, we derive an expression for the marginal value of public funds λ. Using the transversality condition
ηs(θ) = 0 yields:

λ = (1 + r)s−1 1∫
Θs−1 fs(θs|θs−1)hs−1(θs−1)dθs−1

×{
βs−1

∫
Θs−1

U ′(θs−1, θs)fs(θs|θs−1)h̃s−1(θs−1)dθs−1

+

∫
Θs−1

µs(θ
s−1, θs)U

′′(θs−1, θs)dθ
s−1

− (1− τs)
∫

Θs−1

µs−1(θs−1)U ′′(θs−1, θs)fs(θs|θs−1)dθs−1

}
(40)
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for the age-dependent case. For the age-independent case it reads as

λ =

T∑
s=1

(1 + r)s−1 1∫
Θs−1 fs(θs|θs−1)hs−1(θs−1)dθs−1

×{
βs−1

∫
Θs−1

U ′(θs−1, θs)fs(θs|θs−1)h̃s−1(θs−1)dθs−1

+

∫
Θs−1

µs(θ
s−1, θs)U

′′(θs−1, θs)dθ
s−1

− (1− τs)
∫

Θs−1

µs−1(θs−1)U ′′(θs−1, θs)fs(θs|θs−1)dθs−1

}
(41)

We next derive expressions for the Lagrangian multiplier function(s) on the envelope condition(s). For the
age-dependent case, use (36) to obtain

ηs(θs) =
λ

(1 + r)s−1

∫
Θs−1

∫ θ

θs

dFs(θ̃s|θs−1)hs−1(θs−1)dθs−1

− βs−1

∫
Θs−1

∫ θ

θs

U ′(Rs(θ
s−1, θs))dFs(θ̃s|θs−1)h̃s−1(θs−1)dθs−1

−
∫

Θs−1

∫ θ

θs

µs(θ
s−1, θs)U

′′(Rs(θ
s−1, θs))dθ̃sdθ

s−1

+ β(1 + r)(1− τs)
∫

Θs−1

µs−1(θs−1)

∫ θ

θs

U ′′(Rs(θ
s−1, θs))dFs(θ̃s|θs−1)dθs−1. (42)

For the age-independent case, it reads as

η(θ) =

T∑
t=1

λ

(1 + r)t−1

∫
Θt−1

∫ θ

θ

dFt(θ̃|θt−1)ht−1(θt−1)dθt−1

−
T∑
t=1

βt−1

∫
Θt−1

∫ θ

θ

U ′(θt−1, θt)dFt(θ̃|θt−1)h̃t−1(θt−1)dθt−1

−
T∑
t=1

∫
Θt−1

∫ θ

θ

µt(θ
t−1, θ̃)U ′′(θt−1, θ̃)dθ̃dθt−1

+

T∑
t=1

(1− τs)
∫

Θt−1

µt−1(θt−1)

∫ θ

θ

U ′′(θt−1, θ̃)dFt(θ̃|θt−1)dθt−1. (43)

Next, we derive an expression for µt(θt). The notation refers to the age-dependent and the age-independent
case are equivalent. Use (38) to obtain, with SOCs(θs) being the second-order condition for savings from the
individuals problem:

µs(θ
s) =

λ
(1+r)s−1 τh(θs−1) + (1− τs)β(1 + r)µs−1(θs−1)U ′′ (θs) fs(θs|θs−1)

SOCs(θs)

+
(1− τ)(1 + r)

∫
Θ
µs+1(θs, θs+1)U ′′(θs, θs+1)dθs+1

SOCs(θs)
. (44)

Therefore, we define some terms that make notation less burdensome:
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As(θ
s) =

λ
(1+r)s−1 τh(θs−1)

SOCs

Bs(θ
s) =

(1− τ)U ′′ (θs) fs(θs|θs−1)

SOCs

Cs(θ
s, θs+1) =

(1− τ)(1 + r)U ′′(θs, θs+1)

SOCs
,

then, we can rewrite (44) as

µs(θ
s) = As(θ

s) +Bs(θ
s)µs−1(θs−1) +

∫
Θ

Cs(θ
s, θs+1)µs+1(θs, θs+1)dθs+1.

Or, more concretely for s = T − 2:

µT−2(θT−2) =AT−2(θT−2) +BT−2(θT−2)µT−3(θT−3)

+

∫
Θ

CT−2(θT−2, θT−1)µT−1(θT−2, θT−1)dθT−1. (45)

For s = T − 1, we get:

µT−1(θT−1) =AT−1(θT−1) +BT−1(θT−1)µT−2(θT−2). (46)

Now insert (46) into (45). Omitting arguments, this yields:

µT−2 =
AT−2 +BT−2µT−3 +

∫
Θ
CT−2AT−1dθT−1

1−
∫

Θ
CT−2(θT−2, θT−1)BT−1(θT−1)dθT−1

.

Now insert this into µT−3

µT−3 =AT−3 +BT−3µT−4 +

∫
Θ

CT−3

AT−2 +BT−2µT−3 +
∫
θT−1

CT−2AT−1dθT−1

1−
∫

Θ
CT−2BT−1dθT−1

dθT−2, (47)

yielding

µT−3 =
AT−3 +BT−3µT−4 +

∫
Θ
CT−3

AT−2+
∫
Θ
CT−2AT−1dθT−1

1−
∫
Θ
CT−2BT−1dθT−1

dθT−2

1−
∫

Θ
CT−3BT−2

1−
∫
Θ
CT−2BT−1dθT−1

. (48)

Now insert this into µT−4

µT−4 =AT−4 +BT−4µT−5

+

∫
Θ

CT−4

AT−3 +BT−3µT−4 +
∫

Θ
CT−3

AT−2+
∫
Θ
CT−2AT−1dθT−1

1−
∫
Θ
CT−2BT−1dθT−1

dθT−2

1−
∫

Θ
CT−3BT−2

1−
∫
Θ
CT−2BT−1dθT−1

dθT−3. (49)

Rewrite to obtain
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µT−4 =

1−
∫

Θ

CT−4BT−3

[
1−

∫
θT−2

CT−3BT−2

[
1−

∫
Θ

C2BT−1dθT−1

]−1
]−1

−1

(
AT−4 +BT−4µT−5

+

∫
Θ

CT−4

AT−3 +
∫

Θ
CT−3

AT−2+
∫
Θ
CT−2AT−1dθT−1

1−
∫
Θ
CT−2BT−1dθT−1

dθT−2

1−
∫

Θ
CT−3BT−2

1−
∫
Θ
CT−2BT−1dθT−1

dθT−3

)
. (50)

Finally, calculate µT−5, after which the pattern should become clear.

µT−5 =

1−
∫

Θ

CT−5BT−4

[
...

[
1−

∫
Θ

CT−2BT−1dθT−1

]−1

....

]−1
−1

(AT−5 +BT−5µT−6

+

∫
Θ

CT−5

AT−4 +
∫

Θ
CT−4

AT−3+
∫
Θ
CT−3

AT−2+
∫
Θ CT−2AT−1dθT−1

1−
∫
Θ CT−2BT−1dθT−1

dθT−2

1−
∫
Θ

CT−3BT−2
1−
∫
Θ CT−2BT−1dθT−1

1−
∫

Θ
CT−4BT−3

1−
∫
Θ

CT−3BT−2
1−
∫
Θ CT−2BT−1dθT−1

 . (51)

Now define

Ds =

1−
∫

Θ

CsBs+1

1−
∫

Θ

Cs+1Bs+2

[
...

[
1−

∫
Θ

CT−2BT−1dθT−1

]−1

....

]−1

dθs+2

−1

dθs+1


−1

.

Using this definition, we can write µT−5 as

µT−5 =
AT−5 +BT−5µT−6 +

∫
Θ
CT−5

AT−4+
∫
θT−3

CT−4

AT−3+
∫
Θ CT−3

AT−2+
∫
Θ CT−2AT−1
DT−2

DT−3

DT−4

DT−5
. (52)

It now turns out helpful to make another definition:

Es =

∫
Θ

Cs
As+1

∫
Θ
Cs+1

As+2+
∫
Θ
Cs+2

As+3+
∫
Θ Cs+3

As+4......

Ds+4
Ds+3

Ds+2

Ds+1
.

Then we can write µT−5 as

µT−5 =
AT−5 +BT−5µT−6 + ET−5

DT−5
.

In genereal, we thus obtain:

µs =
As +Bsµs−1 + Es

Ds
.

For the second period, we obtain
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µ2 =
A2 +B2µ1 + E2

D2
. (53)

and get

µ1 =
A1 + E1

D1
. (54)

Now we can recursively calculate all other µt for t = 2, ..., T .
In equation (54) one can see that the µ1(θ1) = 0 if savings taxes are zero. Recursive calculation reveals that

all µt are equal to zero.

B.2 Labor Income Taxes

B.2.1 Labor Income Tax Formula

Dividing (37) by Ψ′ 1
θs

and adding (36) yields a formula for the age-dependent marginal tax rate:

T ′s (ys(θs))

1− T ′s (ys(θs))
=

(
1 +

1

ε(θs)

)
ηs(θs)

λ 1
(1+r)s−1 θs

∫
Θs−1 fs(θs|θs−1)hs−1(θs−1)dθs−1

. (55)

Dividing the age-independent equivalent to (37) by Ψ′ 1θ and adding the age-independent equivalent to (36)
yields a formula for the age-independent marginal tax rate:

T ′(y(θ))

1− T ′(y(θ))
=

(
1 +

1

ε(θ)

)
η(θ)

λθ
∑T
t=1

1
(1+r)t−1

∫
Θt−1

∫
Θ
ft(θt|θt−1)ht−1(θt−1)dθt−1

. (56)

B.2.2 Relation Between µ-Formula and Savings Tax Effect formula in a Three-
Period Economy

We now derive the savings responses in T = 3 period economy.

Formulas for Savings Responses We now derive a formula for the savings responses due to an
increase of the marginal tax rate T ′2 (y2(θ2)).

To get a formula for the savings responses ∂a3(θ2)
∂T ′2 (y2(θ2)) and ∂a2(θ1)

∂T ′2 (y2(θ2)) is not simple because the savings
choices are made at different points in time (and for different shock realizations). Further, these savings choices
at different points in time are interlinked with each other. The way we proceed is the following: We look at
agents with certain histories as agents that decide independently from each other. E.g., we look at the savings
adjustment of an agent with history θ2 = (θ1, θ2) who ignores that his savings change will also change savings
behavior of agents of type θ1, i.e. himself one period ago. We will then, in a second step, ask how type θ1 will
react to the savings change of type θ2. But of course this reaction of type θ1 will cause a reaction of type θ2

again and so on and so forth. This will thus lead to an infinite adjustment of savings in all periods. As we show
now, thinking about this like that can yield formulas for change of equilibrium savings behavior. We therefore
proceed step by step and look at the adjustments in the first round of this game between the agents at different
points in time, then at the second round and so on and so forth.

First Round Effects: In period 2, individuals with income higher than y2(θ2) will change savings as their
net income is decreased. The formula for this savings change can be obtained by implicitly differentiating the
respective Euler equation:

a′3(θ2) ≡ − U ′′(θ2)

SOC2(θ2)
, (57)
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where SOCt(θt) is the second-order condition for savings of an agent with history θt. But also individuals in
period one will react to the small tax reform. The increase in taxes tomorrow will make them save more today.
To obtain the respective formula, implicitly differentiate the respective Euler equation and obtain:

A1(θ1) ≡
β(1 + r)(1− τ)

∫ θ
θ2
U ′′(θ1, θ̃2)dF2(θ̃2|θ1)

SOC1(θ1)
. (58)

Note that both of these tax changes are of hypothetical nature as they are computed as if the savings
decisions were not interlinked. However, they are connected and thus (57) and (58) will trigger second-round
effects.

Second Round Effects: The savings adjustment of period 2, (57), will make individuals in period 1 adjust
savings:

A2(θ1) ≡
β(1 + r)(1− τ)

∫ θ
θ2
U ′′(θ1, θ̃2)a′3(θ1, θ̃2)dF2(θ̃2|θ1)

SOC1(θ1)
. (59)

The first round savings adjustment in period 1, captured by (58), will trigger savings adjustments in period
2 for all θ2:

U ′′(θ1, θ2)(1 + r)(1− τ)A1(θ1)

SOC2(θ2)
= a′3(θ1, θ2)(1 + r)(1− τ)A1(θ1). (60)

Third Round Effects: The savings adjustment of period 2 (60) will now trigger savings adjustments in
period 1

β(1 + r)2(1− τ)2
∫

Θ
U ′′(θ1, θ2)a′3A1(θ1)dF2(θ2|θ1)

SOC1(θ1)
= A1(θ1)A3(θ1), (61)

where A3(θ1) is defined such that the equal sign holds.
The savings adjustment of period 1 (59) will now trigger savings adjustments in period 2

a′3(θ1, θ2)(1 + r)(1− τ)A2(θ1). (62)

Fourth Round Effects: The savings adjustment of period 2 (62) will now trigger savings adjustments in
period 1

(1 + r)(1− τ)2
∫

Θ
U ′′(θ1, θ2)a′3A2(θ1)dF2(θ2|θ1)

SOC1(θ1)
= A2(θ1)A3(θ1) (63)

The savings adjustment of period 1 (63) will now trigger savings adjustments in period 2

a′3(θ1, θ2)(1 + r)(1− τ)A1(θ1)A3(θ1) (64)

One could now repeat this until infinity. It is easy to show that savings responses in period 2 for all types
with income lower than y2(θ2) add up to

∂a3(θ2)

∂T ′2 (y2(θ2))
= a′3(1 + r)(1− τ)(A1 +A2)

∞∑
i=0

Ai3. (65)

and for all types with income higher than y2(θ2) add up to

∂a3(θ2)

∂T ′2 (y2(θ2))
= a′3 + a′3(1 + r)(1− τ)(A1 +A2)

∞∑
i=0

Ai3. (66)
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Further, period 1 savings adjust according to:

∂a2(θ1)

∂T ′2 (y2(θ2))
= (A1 +A2)

∞∑
i=0

Ai3. (67)

Relation to µ-formulas To show the relationship between the µ-formula and the one with savings-tax
effects, we have to show that

−
∫

Θ

∫ θ

θ2

µ2(θ1, θ̃2)U ′′(θ1, θ̃2)dθ̃2dθ1

+ β(1 + r)(1− τ)

∫
Θ

µ1(θ1)

∫ θ

θ2

U ′′(θ1, θ̃2))dF2(θ̃2|θ1)dθ1 (68)

which is the term appearing in the optimal tax formula in Appendix B.2.1 is equal to

λτ

1 + r

∫
Θ

(
(A1(θ1) +A2(θ1))

∞∑
i=0

A3(θ1)i

)
dF1(θ1) + τ

λ

(1 + r)2

(
a′3 + a′3(1 + r)(1− τ)(A1 +A2)

∞∑
i=0

Ai3

)
.

Using (54) and evaluating for T = 3, yields

µ1(θ1) =
λ

(1−τ)
∫
Θ
τa′3dF2(θ2|θ1)f1(θ1)

SOC1
+ λ f1(θ1)τ

SOC1

1− (1−τ)2(1+r)2
∫
Θ
a′3U

′′(θ1,θ2)dF2(θ2|θ1)

SOC1

and then inserting into (53), yields

µ2(θ1, θ2) = µ1(θ1)β(1− τ)(1 + r)
U ′′ (θ1, θ2) f2(θ2|θ1)

SOC2
+

λ

1 + r

h2(θ2)τ

SOC2
(69)

Inserting these two terms into (68) yields

− λτ

1 + r

∫
Θ

∫ θ

θ2

U ′′(θ1, θ̃2)

SOC2
dF2(θ̃2|θ1)dF1(θ1)

+ β(1 + r)(1− τ)

∫
Θ

µ1(θ1)

∫ θ

θ2

U ′′(θ1, θ̃2)

(
1− U ′′(θ1, θ̃2)

SOC2

)
dF2(θ̃2|θ1)dθ1 (70)

λτ

1 + r

∫
Θ

∫ θ

θ2

a′3(θ1, θ̃2)dF2(θ̃2|θ1)dF1(θ1)

+ λτβ(1 + r)(1− τ)

∫
Θ

( ∞∑
i=0

Ai3

)∫ θ

θ2

U ′′(θ1, θ̃2)

SOC1
(1 + a′3) dF2(θ̃2|θ1)dF1(θ1)

+ λτβ(1 + r)(1− τ)∫
Θ

(
(1− τ)

∞∑
i=0

Ai3

)(∫
θ2

a′3dF2(θ2|θ1)

)∫ θ

θ2

U ′′(θ1, θ̃2)

SOC1
(1 + a′3) dF2(θ̃2|θ1)dF1(θ1) (71)

Using the definitions of A1 and A2, this can be rewritten as
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λτ

1 + r

∫
Θ

∫ θ

θ2

a′3(θ1, θ̃2)dF2(θ̃2|θ1)dF1(θ1)

+ λτ

∫
Θ

( ∞∑
i=0

A3(θ1)i

)
(A1(θ1) +A2(θ1))dF1(θ1)

+ λτ

∫
Θ

( ∞∑
i=0

A3(θ1)i

)
(A1(θ1) +A2(θ1))

∫
Θ

(1− τ)a′3(θ1, θ2)dF2(θ2|θ1)dF1(θ1) (72)

which completes the proof. The formulas for the optimal marginal labor income tax rates in period 1 and 2
read as:

T ′1 (y1(θ1))

1− T ′1 (y1(θ1))
=

(
1

ε
+ 1

)
1

θ1λf1(θ1)[
λ

∫ θ

θ1

dF1(θ̃1)−
∫ θ

θ1

U ′(θ̃1)dF̃1(θ̃1)−
∫ θ

θ1

µ1(θ̃1)U ′′(R1(θ̃1))dθ̃1

]

and in period 3 it reads as

T ′3 (y3(θ3))

1− T ′3 (y3(θ3))
=

(
1

ε
+ 1

)
1

θ3λ
∫
θ2 f3(θ3|θ2)h2(θ2)dθ2

×

[
λ

(1 + r)2

∫
θ2

∫ θ

θ3

dF3(θ̃3|θ2)h2(θ2)dθ2 − β2

∫
θ2

∫ θ

θ3

U ′(θ2, θ̃3)dF3(θ̃3|θ2)h̃2(θ2)dθ2

+ (1− τ)

∫
θ2

µ2(θ2)

∫ θ

θ3

U ′′(θ2, θ̃3)dF3(θ̃3|θ2)dθ2

]

Using the definition of µ1 and µ2 from above, one can show that the ‘µ-terms’ in these optimal tax formulas
reflect the fiscal externalities from the savings adjustment.

B.2.3 Income Effect on Savings

Consider the savings effect for history-independent taxes, defined by:

SI(θ) = τ Is

T∑
j=2

(1 + r)j−2

∫
Θj−1

∫ θ

θ

∂aj(θ
j−1)

∂T (y(θ̃))
dθ̃hj−1(θj−1)dθj−1.

We can now define income effects, similar to Saez (2001) for labor income or Golosov, Tsyvinski, and Werquin
(2014) for savings and labor income.

ηI(θj−1, θ)(1− τ Is ) =
∂aj(θ

j−1)

∂T (y(θ))
.

If we write the average income effect as
∫

Θj−1

∫ θ
θ
∂aj(θ

j−1)

∂T (y(θ̃))
dθ̃hj−1(θj−1)dθj−1 = η̄Ij (θ)(1− τ Is ), we obtain:

SI(θ) =
τ Is

1− τ Is

T∑
j=2

(1 + r)j−2 · η̄Ij (θ).
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Two important aspects make η̄Ij (θ) different from a standard income effect in a static model. First, with age-
independent taxation a change in labor taxes for some income level affects an individual‘s income (potentially)
in multiple periods. With age-dependent taxation ηAt (θj−1, θ)(1 − τ Is ) =

∂aj(θ
j−1)

∂Tt(yt(θt)) has opposing signs for all
savings decisions decided upon before/in the time period of the tax increase (j ≤ t) and all periods after the
tax increase (j > t). In both the age-dependent and the age-independent case, the sign of SI(θ) and SAt (θ) is
hence ambiguous. Second with idiosyncratic uncertainty changes in taxes also affect the riskiness of the income
stream and hence the need for precautionary savings.

B.3 Decomposition of the Mechanical Effect in the Presence of Cap-

ital Taxes
In this appendix we show that the decomposition of the mechanical effect as derived in Section 4.2 also holds
in the presence of a non-zero capital tax rate τs. Again, we consider a reform, where the marginal tax rate for
individuals with income y(θ) is increased such that all individuals with income y > y(θ) will pay exactly one more
dollar of income taxes. Besides the labor supply effect on welfare, this affects welfare by

∑T
t=1Mt(θ) + SI(θ).

We now slightly reinterpret the tax perturbation to intuitively derive that the effect on welfare can also be
written as

∑T
t=1M

R
t (θ) +M I

t (θ) + SI(θ), where M I(θ) is as defined in (24) and MR
t (θ) is as defined in (25).

For the reinterpretation, we assume that the additional labor income tax revenue ∆(θ) is then redistributed
lump-sum.

In the presence of a non-zero capital tax τs, one also has to take into account that the increase in the lump
sum element by ∆(θ) (as defined in (4.2)) causes savings responses that affect welfare. Formally this effect on
welfare through the change in the Euler equations is given by:

S∗(θ) =∆(θ)

{
T−1∑
t=1

∫
Θt−1

∫
θ

µt(θ
t−1, θt)U

′′(θt−1, θt)dθtdθ
t−1

−
T∑
t=2

(1− τs)
∫

Θt−1

µt−1(θt−1)

∫
Θ

U ′′(θt−1, θt)dFt(θt|θt−1)dθt−1

}
. (73)

Equations (24) and (27) can be derived in the same way as in the main text. However, now we do not have
MR∗
t (θ) = MR

t (θ) but instead
∑T
t=1M

R∗
t (θ) + S∗(θ) =

∑T
t=1M

R
t (θ):

T∑
t=1

MR∗
t (θt) + S∗(θ) =

∫ θ

θ

λf1(θ1)− f̃1(θ1)U ′(θ1)dθ1

+

T∑
t=2

∫
Θt−1

(
λht−1(θt−1)

(1 + r)t−1
−
h̃t−1(θt−1)

∫
θt
U ′(θt−1, θt))dFt(θt|θt−1)

(1 + r)t−1

)
× CU(θt−1; θ)dθt−1

−∆(θ)

T∑
t=1

∫
Θt−1

(
λht−1(θt−1)

(1 + r)t−1
−
h̃t−1(θt−1)

∫
θt
U ′(θt−1, θt))dFt(θt|θt−1)

(1 + r)t−1

)
dθt−1 + S∗(θ). (74)

which is equal to
∑T
t=1M

R
t (θ) because the last line is equal to zero because of the transversality condition

η(θ) = 0.
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C Details on Calibration
We use the empirical model from Karahan and Ozkan (2013), who estimate their model using PSID-data. yih,t
denotes log income of individual i at age h in period t. To obtain residual log incomes ỹih,t, the authors regress
log earnings on some observables (age and education):

yih,t = f(Xi
a; θt) + ỹih,t,

where f(Xi
a) is a function of the observable characteristics. Residual income is then decomposed into a fixed

effect (αi), an AR(1) component (zih,t) and a transitory component (φtεih):

ỹih,t = αi + zih,t + φtε
i
h,t,

where the AR(1) process is given by
zih,t = ρh−1z

i
h−1,t−1 + πtη

i
h,

and where the error term ηih captures persistent shocks, πt is a time dependent loading factor and ρh−1 measures
the persistence of these shocks.

Based on non-parametric estimates, Karahan and Ozkan (2013) divide individuals into three age groups:
24-33 (young), 34-52 (middle age) and 53-60 (old). In the following, we list the values they obtain for the
different parameters, where the indices Y,M,O correspond to the three age groups from their paper.
Age-dependent parameters:

• Persistence parameters: ρY = 0.88, ρM = 0.97 and ρO = 0.96,

• Variances of the persistent error terms: σ2
η,Y = 0.027, σ2

η,M = 0.013 and σ2
η,O = 0.026

• Variances of the transitory shock: σ2
ε,Y = 0.056, σ2

ε,M = 0.059 and σ2
ε,O = 0.068

Age-independent parameters:

• Variance of individual fixed effect: σ2
α = 0.0707

• Variance of z1 (i.e. the starting value of the persistence term): σ2
z = 0.0767

Time-dependent parameters:

• As we consider only one cohort, we assume the time dependent loading factors πt and φt to be constant.
Indeed, we set them to π = 1.1253 and φ = 1.1115 which corresponds to the values from 1996 as they lie
in the middle of all estimates for the years from 1968-1997.

Parameters in f(Xi
a; θt):

• The function takes the form of a 3rd order polynomial in age. The coefficients are 0.0539713 for age,
-0.153567 for (age/10)2 and 0.0111291 for (age/10)3.

• As Karahan and Ozkan (2013), we distinguish three education groups: individuals without high school
degree, high school graduates and college graduates. The education dummies take on the values 9.570346,
9.91647 and 10.26789 respectively.

Based on all these parameters, one can now simulate the evolution of the earnings distribution. We simulated
millions of lives such that a law of large numbers applies. For each simulated life, we then have the income for
each year, which allows us to calculate the average income of one individual for all three parts of his life. For
our simulations these are the age groups 24-36, 37-49 and 50-62 – see main text. We set the initial share of non

52



0 20 40 60 80 100 120 140 160 180 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

D
e
n
s
it
ie

s

Income, 1000s

 

 

24−36

37−49

50−62

Figure 8: Income Distribution for Each Age Group
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Figure 9: Conditional Income Distributions, Middle Aged Workers

high-school graduates to 0.15, for high-school graduates to 0.60 and for college graduates to 0.15. This matches
well US numbers – see, for example, the NLSY97.

We next discretize the earnings distribution. Thus for each simulated life, we then have 3 grid points; one
for each period. With a standard kernel smoother (bandwidth of $2,500), we then smoothed the unconditional
earnings distributions over this grid space as well as the conditional earnings distributions and therefore the tran-
sition probabilities. The final step was then to calibrate the skill distributions from the earnings distributions,
as is commonly done (Saez 2001).

It becomes clear how inequality evolves over the life cycle. In the middle age group there are much more
people with high incomes relative to the young and old. The income distribution first fans out, going from
young to middle, and then compresses again in the last part of the life cycle. Figure 9 shows three conditional
income distributions for the middle age-group, conditioning on earnings of $14,000, $30,000 and $100,000 in the
previous period respectively.
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